Skip to main content
Log in

Voltage gating in VDAC is markedly inhibited by micromolar quantities of aluminum

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The mitochondrial outer membrane contains voltagegated channels called VDAC that are responsible for the flux of metabolic substrates and metal ions across this membrane. The addition of micromolar quantities of aluminum chloride to phospholipid membranes containing VDAC channels greatly inhibits the voltage dependence of the channels' permeability. The channels remain in their high conducting (open) state even at high membrane potentials. An analysis of the change in the voltage-dependence parameters revealed that the steepness of the voltage dependence decreased while the voltage needed to close half the channels increased. The energy difference between the open and closed states in the absence of an applied potential did not change. Therefore, the results are consistent with aluminum neutralizing the voltage sensor of the channel. pH shift experiments showed that positively charged aluminum species in solution were not involved. The active form was identified as being either (or both) the aluminum hydroxide or the tetrahydroxoaluminate form. Both of these could reasonably be expected to neutralize a positively charged voltage sensor. Aluminum had no detectable effect of either single-channel conductance or selectivity, indicating that the sensor is probably not located in the channel proper and is distinct from the selectivity filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelsberger-Mangan, D.M., Colombini, M. 1987. Elimination and restoration of voltage dependence in the mitochondrial channel, VDAC, by graded modification with succinic anhydride.J. Membrane Biol 98:157–168

    Google Scholar 

  • Bartholf, R.L., Wills, M.R., Savory, J. 1984. Quantitative study of aluminum binding to human serum albumin and transferrin by a chelex competitive binding assay.Biochem. Biophys. Res. Commun. 125(3):1020–1024

    PubMed  Google Scholar 

  • Bowen, K.A., Tam, K., Colombini, M. 1985. Evidence for titratable gating charges controlling the voltage dependence of the outer mitochondrial membrane channel, VDAC.J. Membrane Biol. 86:51–59

    Google Scholar 

  • Burnatowska-Hledin, M.A., Ebner, K.V., Mayor, G.H. 1985b. Effects of aluminum on rat liver mitochondrial function.Fed. Proc. 44(3):496

    Google Scholar 

  • Burnatowska-Hledin, M.A., Klein, A.M., Mayor, G.H. 1985a. Effect of aluminum on the renal handling of phosphate in the rat.Am. J. Physiol. 248:F64-F69

    PubMed  Google Scholar 

  • Burnatowska-Hledin, M.A., Mayor, G.H. 1984. The effects of aluminum loading on selected tissue calcium and magnesium concentrations in rats.Biol. Trace Elem. Res. 6:531–535

    Google Scholar 

  • Colombini, M. 1979. A candidate for the permeability pathway of the outer mitochondrial membrane.Nature (London) 279:643–645

    Google Scholar 

  • Colombini, M. 1980a. Pore size and properties of channels from mitochondria isolated fromNeurospora crassa.J. Membrane Biol. 53:79–84

    Google Scholar 

  • Colombini, M. 1980b. Structure and mode of action of a voltage-dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane.Ann. N.Y. Acad. Sci. 341:552–563

    PubMed  Google Scholar 

  • Colombini, M. 1986. Voltage gating in VDAC:Toward a molecular mechanism.In: Ion Channel Reconstitution. C. Miller, editor. pp. 533–552. Plenum, New York

    Google Scholar 

  • Doring, C., Colombini, M. 1985a. Voltage dependence and ion selectivity of the mitochondrial channel, VDAC, are modified by succinic anhydride.J. Membrane Biol. 83:81–86

    Google Scholar 

  • Doring, C., Colombini, M. 1985b. The mitochondrial voltage-dependent channel, VDAC, is modified asymmetrically by succinic anhydride.J. Membrane Biol. 83:87–94

    Google Scholar 

  • Dousa, T.P., Kempson, S.A. 1982. Regulation of renal brush border membrane transport of phosphate.Miner. Electrolyte Metab. 7:113–121

    PubMed  Google Scholar 

  • Ehrenstein, G., Lecar, H., Nossal, R. 1970. The nature of the negative resistance in bimolecular lipid membranes containing excitability inducing material.J. Gen. Physiol. 55:119–133

    PubMed  Google Scholar 

  • Fisher, A.A. 1984. Reactions to aluminum and its salts.Cutis 33(2):154

    PubMed  Google Scholar 

  • Freitag, H., Neupert, W., Benz, B. 1982. Purification and characterization of a pore protein of the outer mitochondrial membrane fromNeurospora crassa.Eur. J. Biochem. 123:629–636

    PubMed  Google Scholar 

  • Garruto, R.M., Fukatsu, R., Yanagihara, R., Gajdusek, D.C., Hook, G., Fiori, C.E. 1984. Imaging calcium and aluminum in neurofibrillary tangle-bearing neurons in parkinsonism-dementia Guam.Proc. Natl. Acad. Sci. USA 81:1875–1879

    PubMed  Google Scholar 

  • Kagawa, Y., Racker, E. 1971. Partial resolution of the enzymes catalyzing oxidative phosphorylation.J. Biol. Chem. 246:5477–5487

    Google Scholar 

  • Klatzo, I., Wisniewski, H., Streicher, E. 1965. Experimental production of neurofibrillary degeneration: I. Light microscopic observations.J. Neuropath. Exp. Neurol. 24:187–199

    PubMed  Google Scholar 

  • Lai, J.C.K., Baker, A., Carlson, K.C., Jr., Blass, J.P., 1985. Differential effects of monovalent, divalent and trivalent metal ions on rat brain hexokinase.Comp. Biochem. Physiol. 80(2):291–294

    Google Scholar 

  • Lai, J.C.K., Blass, J.P. 1984. Inhibition of brain glycolysis by aluminum.J. Neurochem. 42(2):438–446

    PubMed  Google Scholar 

  • Lai, J.C.K., Guest, J.F., Leung, T.K.C., Lim, L., Davison, A.N. 1980. The effects of cadmium, manganese, and aluminum on sodium-potassium-activated and magnesium-activated adenosine triphosphate activity and choline uptake in the rat brain synaptosomes.Biochem. Pharmacol. 29:141–146

    PubMed  Google Scholar 

  • Lieberherr, M., Grosse, B., Cournot-Witmer, G., Thil, C.L., Balsan, S. 1982.In vitro effects of aluminum on bone phosphatases: A possible interaction with bPTH and vitamin D3 metabolites.Calcif. Tissue Int. 34:280–284

    PubMed  Google Scholar 

  • Linden, M., Gellerfors, P., Nelson, B.D. 1982. Purification of a protein having pore forming activity from rat liver mitochondria outer membrane.Biochem. J. 208:77–82

    PubMed  Google Scholar 

  • Mannella, C.A. 1982. Structure of the outer mitochondrial membrane: Ordered arrays of pore-like subunits in outer-membrane fractions fromNeurospora crassa mitochondria.J. Cell Biol. 94:680–687

    PubMed  Google Scholar 

  • Mannella, C.A., Bonner, W.D. Jr. 1975. X-ray diffraction from oriented outer mitochondrial membranes. Detection of inplane subunit structure.Biochem. Biophys. Acta 413:226–233

    PubMed  Google Scholar 

  • Mannella, C.A., Colombini, M. 1984. Evidence that the crystalline arrays in the outer membrane ofNeurospora mitochondria are composed of the channel protein, VDAC.Biochim. Biophys. Acta 774:206–214

    PubMed  Google Scholar 

  • Mayor, G.H., Burnatowska-Hledin, M.A. 1983. Impaired renal function and aluminum metabolism.Fed. Proc. 42(13):2979–2983

    PubMed  Google Scholar 

  • Montal, M., Mueller, P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties.Proc. Natl. Acad. Sci. USA 69:3561–3566

    PubMed  Google Scholar 

  • Nakashima, R.A., Mangan, P.S., Colombini, M., Pedersen, P.L. 1985. Hexokinase receptor complex in hepatoma mitochondria: Evidence from N,N′-dicyclohexylcarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC.Biochemistry 25:1015–1021

    Google Scholar 

  • Neet, K.E., Furman, T.C., Hueston, W.J. 1982. Activation of yeast hexokinase by chelators and the enzymic slow transition due of metal-nucleotide interactions.Arch. Biochem. Biophys. 213(1):14–25

    PubMed  Google Scholar 

  • Parkinson, I.S., Ward, M.K., Kerr, D.N.S. 1981. Dialysis encephalopathy, bone disease and anemia: The aluminum intoxication syndrome during regular haemodialysis.J. Clin. Pathol. 34:1285–1294

    PubMed  Google Scholar 

  • Parsons D.F., Williams, G.R., Chance, B. 1966. Characteristics of isolated and purified preparations of the outer and inner membranes of mitochondriaAnn. N.Y. Acad. Sci. 137:643–666

    PubMed  Google Scholar 

  • Perl, D.P. 1985. Relationship of aluminum to Alzheimer's disease.Envir. Health Perspec. 63:149–153

    Google Scholar 

  • Perl, D.P., Brody, A.R. 1980a. Alzheimer's disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons.Science 208:297–299

    PubMed  Google Scholar 

  • Perl, D.P., Brody, A.R. 1980b. Detection of aluminum by SEM-X-ray spectrometry within the neurofibrillary tangle-bearing neurons of Alzheimer's disease.Neurotoxicology 1:133–137

    Google Scholar 

  • Perl, D.P., Gajdusek, D.C., Garruto, R.M., Yanagihara, R.T., Gibbs, C.J., Jr. 1982. Interneuronal aluminum accumulation in amyotrophic lateral sclerosis and parkinsonism dementia of Guam.Science 217:1053–1054

    PubMed  Google Scholar 

  • Roos, N., Benz, R., Brdiczka, D. 1982. Identification and characterization of the pore-forming protein in the outer membrane of rat liver mitochondria.Biochim. Biophys. Acta 686:204–214

    PubMed  Google Scholar 

  • Schein, S.J., Colombini, M., Finkelstein, A. 1976. Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained fromParamecium mitochondria.J. Membrane Biol. 30:99–120

    Google Scholar 

  • Shore, D., Wyatt, R.J. 1983. Aluminum and Alzheimer's disease.J. Nerv. Ment. Dis. 171(9:553–558

    PubMed  Google Scholar 

  • Siegel, N., Haug, A. 1983. Aluminum interaction with calmodulin. Evidence for altered structure and function from optical and enzymatic studies.Biochim. Biophys. Acta 744:36–45

    Google Scholar 

  • Smack, D.P., Colombini, M. 1985. Voltage-dependent channels found in the membrane fraction of corn mitochondria.Plant Physiol. 79:1094–1097

    Google Scholar 

  • Smith, R.M., Martell, A.E. 1976. Critical Stability Constants. Vol. 4: Inorganic Complexes. Plenum, New York

    Google Scholar 

  • Solheim, L.P., Fromm, H.J. 1980. pH kinetic studies of bovine brain hexokinase.Biochemistry 19(26):6074–6080

    PubMed  Google Scholar 

  • Terry, R.D., Pena, C. 1965. Experimental production of neurofibrillar degeneration: II. Electron microscopy, phosphatase histochemistry and electron probe analysis.J. Neuropathol. Exp. Neurol. 24:200–210

    PubMed  Google Scholar 

  • Verbueken, A.H., Van de Vyver, F.L., Van Grieken, R.E., Paulus, G.J., Visser, W.J., D'Hease, P., DeBroe, M.E. 1984. Ultrastructural localization of aluminum in patients with dialysis-associated osteomalacia.Clin. Chem. 30(5):763–768

    PubMed  Google Scholar 

  • Viola, R.E., Morrison, J.F., Cleland, W.W. 1980. Interaction of metal(III)-adenosine 5′-triphosphate complexes with yeast hexokinase.Biochemistry 19(14): 3131–3137

    PubMed  Google Scholar 

  • Zalman, L.S., Nikaido, H., Kagawa, Y. 1980. Mitochondrial outer membrane contains a protein producing nonspecific diffusion channels.J. Biol. Chem. 255:1771–1774

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dill, E.T., Holden, M.J. & Colombini, M. Voltage gating in VDAC is markedly inhibited by micromolar quantities of aluminum. J. Membrain Biol. 99, 187–196 (1987). https://doi.org/10.1007/BF01995699

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01995699

Key Words

Navigation