Skip to main content
Log in

The distributions of nucleotides near bacterial transcription initiation and termination sites show distinct signals that may affect DNA geometry

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Compilation and analysis of all bacterial sequences which are aligned by their transcription initiation sites show a dramatic behavior of the four nucleotides. Large peaks of T and A are observed. This highly nonrandom distribution is likely to affect the DNA geometry in addition to affecting the strength of binding between the two DNA strands. Following this site, the G and C rise above their overall bacterial mean. Alignment by transcription termination sites indicates that this behavior continues till the mRNA 3′ termini. At this site the concentrations of A and T rise again above the mean. Analysis of the distributions of the 256 quartets in the 1000 nucleotide regions surrounding both transcription initiation and termination sites has been carried out. Some A/T combination sequences may serve as signals to the bacterial transcription machinery, in addition to the well-established T T G A C A and T A T A A T at positions −35 and −10, respectively, and a run of Ts at the transcription termination site. The frequent occurrences of (dA)/(dT) runs in the vicinity of these sites may result in curved DNA structures, affecting recognition and the nature of the interaction between the RNA polymerase and the DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnott S, Chandrasekaran R, Hall IH, Puigjaner LC (1983) Heteronomous DNA. Nucleic Acids Res 11:4141–4155

    PubMed  Google Scholar 

  • Bossi L, Smith DM (1984) Conformational change in the DNA associated with an unusual promoter mutation in an tRNA operon ofSalmonella. Cell 39:643–652

    Article  PubMed  Google Scholar 

  • Brendel V, Trifonov EN (1984) A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res 12: 4411–4427

    PubMed  Google Scholar 

  • Briat J-F, Chamberlin MJ (1984) Identification and characterization of a new transcription termination factor fromEscherichia coli. Proc Natl Acad Sci USA 81:7373–7377

    PubMed  Google Scholar 

  • Collins FS, Metherall JE, Yamakawa M, Pan J, Weissman SM, Forget BG (1985) A point mutation in theAgamma-globin gene promoter in Greek hereditary persistence of fetal hemoglobin. Nature 313:325–326

    Article  PubMed  Google Scholar 

  • Diekmann S, Wang JC (1985) On the sequence determination and flexibility of the kinetoplast DNA fragment with abnormal gel electrophoretic mobilities. J Mol Biol 186:1–11

    Article  PubMed  Google Scholar 

  • Gelinas R, Endlich B, Pfeiffer C, Yagi M, Stamatoyannopoulos G (1985) G to A substitution in the distal CCAAT box of theAgamma-globin gene in Greek hereditary persistence of fetal hemoglobin. Nature 313:323–325

    Article  PubMed  Google Scholar 

  • Gilbert W (1976) In: Losick R, Chamberlin M (eds) RNA polymerase. Cold Spring Harbor Laboratory, Cold Spring Harbor NY, pp 193–205

    Google Scholar 

  • Hagerman PJ (1984) Evidence for the existence of stable curvature of DNA in solution. Proc Natl Acad Sci USA 81:4632–4636

    PubMed  Google Scholar 

  • Hagerman PJ (1985) Sequence dependence of the curvature of DNA: a test of the phasing hypothesis. Biochemistry 24:7033–7037

    Article  PubMed  Google Scholar 

  • Hagerman PJ (1986) Sequence directed curvature of DNA. Nature 321:449–450

    Article  PubMed  Google Scholar 

  • Hawley DK, McClure WR (1983) Compilation and analysis ofEscherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255

    PubMed  Google Scholar 

  • Jernigan RL, Sarai A, Ting K-L, Nussinov R (1986) Hydrophobic interactions in the major groove can influence DNA local structure. J Biomol Str Dyn 4:41–48

    Google Scholar 

  • Jernigan RL, Sarai A, Shapiro B, Nussinov R (1987) Relationship between curved DNA conformations and slow gel migration J Biomol Str Dyn 4:561–567

    Google Scholar 

  • Kingston RE, Chamberlin MJ (1981) Pausing and attenuation of in vitro transcription in the rrnB operon ofE. coli. Cell 27:523–531

    Article  PubMed  Google Scholar 

  • Koo H-S, Wu H-M, Crothers D (1986) DNA bending at adenine thymine tracts. Nature 320:501–506.

    Article  PubMed  Google Scholar 

  • Lamond AI, Travers AA (1985a) Stringent control of bacterial transcription. Cell 41:4–8.

    Article  Google Scholar 

  • Lamond AI, Travers AA (1985b) Genetically separable functional elements mediate the optimal expression and stringent regulation of a bacterial gene. Cell 40:319–326

    Article  PubMed  Google Scholar 

  • Landy A, Ross W (1977) Viral integration and excision: structure of the lambda att sites. Science 197:1147–1160

    PubMed  Google Scholar 

  • Lennon GG, Nussinov R (1984) Homonyms, synonyms and mutations of the sequence/structure vocabulary. J Mol Biol 175:425–430

    Article  PubMed  Google Scholar 

  • Levene SD, Crothers DM (1983) A computer graphics study of sequence-directed bending of DNA. J Biomol Str Dyn 1: 429–435

    Google Scholar 

  • Levene SD, Wu H-M, Crothers DM (1986) Bending and flexibility of kinetoplast DNA. Biochemistry 25:3988–3995.

    Article  PubMed  Google Scholar 

  • Lilley D (1986) Bent molecules how and why? Nature 320:487–488

    Article  PubMed  Google Scholar 

  • Maniatis T, Ptashne M, Backmann K, Kleid D, Flashman S, Jeffrey A, Maurer R (1975) Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda. Cell 5:109–113.

    Article  PubMed  Google Scholar 

  • Martin FH, Tinoco I Jr (1980) DNA-RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucleic Acids Res 8:2295–2299

    PubMed  Google Scholar 

  • McCall M, Brown R, Kennard O (1985) The crystal structure of d(G-G-G-G-C-C-C-C) a model for poly(dG)·poly(dc). J Mol Biol 183:385–396

    Article  PubMed  Google Scholar 

  • McKnight SL, Kingsbury R (1982) The transcriptional control of a eukaryotic protein-coding gene. Science 217:316–324

    PubMed  Google Scholar 

  • Miller JH, Reznikoff WS (eds) (1978) The operon. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  • Nussinov R (1984a) Promoter helical structure variation at theE. coli polymerase interaction sites. J Biol Chem 259:6798–6805

    PubMed  Google Scholar 

  • Nussinov R (1984b) Strong doublet preferences in nucleotide sequences and DNA geometry. J Mol Evol 20:111–119

    PubMed  Google Scholar 

  • Nussinov R (1984c) Doublet frequencies in evolutionary distinct groups. Nucleic Acids Res 12:1749–1763

    PubMed  Google Scholar 

  • Nussinov R (1985) Large helical conformational deviation from ideal B-DNA and prokaryotic regulatory sites. J Theor Biol 115:179–189

    PubMed  Google Scholar 

  • Nussinov R, Owens J, Maizel JV Jr (1986) Sequence signals in eukaryotic upstream regions. Biochim Biophys Acta 866:109–119

    PubMed  Google Scholar 

  • Platt T (1981) Termination of transcription and its regulation in the tryptophan operon ofE. coli. Cell 24:10–23

    Article  PubMed  Google Scholar 

  • Pribnow D (1975) Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc Natl Acad Sci USA 72:784–788

    PubMed  Google Scholar 

  • Roberts JW (1969) Termination factor for RNA synthesis. Nature 224:1168–1174

    PubMed  Google Scholar 

  • Rosenberg M, Court D (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13:319–353

    Article  PubMed  Google Scholar 

  • Ross W, Landy A (1982) Bacteriophage lambda int protein recognizes two classes of sequence in the phageatt site: characterization of the arm-type sites. Proc Natl Acad Sci USA 79:7724–7728

    PubMed  Google Scholar 

  • Sarma MH, Gupta G, Sarma RH (1985) Untenability of the heteronomous DNA model for poly(dA)·poly(dT) in solution. This DNA adopts a right-handed B-DNA duplex in which the two strands are conformationally equivalent. A 500 MHz NMR study using one dimensional NOE. J Biomol Str Dyn 2:1057–1084

    Google Scholar 

  • Satchwell SC, Drew HR, Travers AA (1986) Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191:659–675

    Article  PubMed  Google Scholar 

  • Schaller H, Gray C, Hermann K (1975) Nucleotide sequence of an RNA polymerase binding site from the DNA of bacteriophage Fd. Proc Natl Acad Sci USA 72:737–741

    PubMed  Google Scholar 

  • Shih M-C, Gussin GN (1984) Differential effects of mutations on discrete steps in transcription initiation at the λ Pre promoter. Cell 34:941–949

    Article  Google Scholar 

  • Siebenlist U (1979) Nucleotide sequence of the three major early promoters of bacteriophage T7. Nucleic Acids Res 6: 1895–1907

    PubMed  Google Scholar 

  • Siebenlist U, Simpson RB, Gilbert W (1980)E. coli RNA polymerase interacts homologously with two different promoters. Cell 20:269–281

    Article  PubMed  Google Scholar 

  • Travers A (1980) A tRNA tyr promoter with an altered in vitro response to ppGpp. J Mol Biol 141:91–97

    PubMed  Google Scholar 

  • Trifonov EN (1986) Curved DNA. CRC Crit Rev Biochem 19: 89–106

    Google Scholar 

  • Wada A, Suyama A (1986a) Homogeneous double-helix-stability in individual genes. In: Sarma RH (ed) Proceedings of the 4th conversation in the discipline of biomolecular stereodynamics. Adenine Press, New York, pp 255–269

    Google Scholar 

  • Wada A, Suyama A (1986b) Local stability of DNA and RNA secondary structure and its relation to biological functions. Prog Biophys Mol Biol 47:113–157

    Article  PubMed  Google Scholar 

  • Wu H-M, Crothers DM (1984) The locus of sequence directed and protein induced DNA bending. Nature 308:509–513

    Article  PubMed  Google Scholar 

  • Zahn K, Blattner FR (1985) Sequence induced DNA curvature at the bacteriophage lambda origin of replication. Nature 317: 451–453

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nussinov, R., Barber, A. & Maizel, J.V. The distributions of nucleotides near bacterial transcription initiation and termination sites show distinct signals that may affect DNA geometry. J Mol Evol 26, 187–197 (1987). https://doi.org/10.1007/BF02099851

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099851

Key words

Navigation