Skip to main content
Log in

Substitutional bias confounds inference of cyanelle origins from sequence data

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Available molecular and biochemical data offer conflicting evidence for the origin of the cyanelle of Cyanophora paradoxa. We show that the similarity of cyanelle and green chloroplast sequences is probably a result of these two lineages independently developing the same pattern of directional nucleotide change (substitutional bias). This finding suggests caution should be exercised in the interpretation of nucleotide sequence analyses that appear to favor the view of a common endosymbiont for the cyanelle and chlorophyll-b-containing chloroplasts. The data and approaches needed to resolve the issue of cyanelle origins are discussed. Our findings also have general implications for phylogenetic inference under conditions where the base compositions (compositional bias) of the sequences analyzed differ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baldauf SL, Manhart, JR, Palmer JD (1990) Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae. Proc Natl Acad Sci USA 87:5317–5321

    Google Scholar 

  • Bishop MJ, Friday AE (1985) Evolutionary trees from nucleic acid and protein sequences. Proc R Soc Lond B 226:271–302

    Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    Google Scholar 

  • Bryant DA, Stirewalt VL (1990) The cyanelle genome of Cyanophora paradoxa encodes ribosomal proteins not encoded by the chloroplast genomes of higher plants. FEBS Lett 259:273–280

    Google Scholar 

  • Campbell WH, Gowri G (1990) Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiol 92:1–11

    Google Scholar 

  • Cavalier-Smith T (1981) Eukaryote kingdoms, seven or nine? Biosystems 14:461–481

    Google Scholar 

  • Cavalier-Smith T (1987) Glaucophyceae and the origin of plants. Evol Trends Plants 1:75–78

    Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10891

    Google Scholar 

  • Cozens AL, Walker JE (1987) The organisation and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus sp. PCC 630I. J Mol Biol 194:359–383

    Google Scholar 

  • Curtis SE, Clegg MT (1984) Molecular evolution of chloroplast DNA sequences. Mol Biol Evol 1:291–301

    Google Scholar 

  • Evrard J-L, Kuntz M, Straus NA, Weil J-H (1988) A class-I intron in a cyanelle tRNA gene from Cyanophora paradoxa: phylogenetic relationship between cyanelles and plant chloroplasts. Gene 71:115–122

    Google Scholar 

  • Evrard J-L, Kuntz M, Weil J-H (1990) The nucleotide sequence of five ribosomal protein genes from the cyanelles of Cyanophora paradoxa: implications concerning the phylogenetic relationship between cyanelles and chloroplasts. J Mol Evol 30:16–25

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Felsenstein J (1988) DNAML model, PHYLIP 3.2 manual. University of California Herbarium, Berkeley.

    Google Scholar 

  • Floener L, Bothe H (1982) Metabolic activities in Cyanophora paradoxa and its cyanelles: II. Photosynthesis and respiration. Planta 156:78–83

    Google Scholar 

  • Floener L, Danneberg G, Bothe H (1982) Metabolic activities in Cyanophora paradoxa and its cyanelles: I. The enzymes of assimilatory nitrate reduction. Planta 156:70–77

    Google Scholar 

  • Gillespie JH (1986) Rates of molecular evolution. Annu Rev Ecol Syst 17:637–665

    Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GJ, Barns SJ, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592

    Google Scholar 

  • Hendy MD, Penny D (1989) A framework for the quantitative study of evolutionary trees. Syst Zool 38:297–309

    Google Scholar 

  • Herdman M, Janvier M, Waterbury JB, Rippka R, Stanier RY (1979) Deoxyribonucleic acid base composition of cyanobacteria. J Gen Microbiol 111:63–71

    Google Scholar 

  • Holmes EC, Pesole G, Saccone C (1989) Stochastic models of molecular evolution and the estimation of phylogeny and rates of nucleotide substitution in the hominoid primates. J Hum Evol 18:775–794

    Google Scholar 

  • Hori H, Osawa S (1987) Origin and evolution of organisms deduced from 5S ribosomal RNA sequences. Mol Biol Evol 4:445–472

    Google Scholar 

  • Janssen I, Jakowitsch J, Michalowski CB, Bohnert HJ, Loeffelhardt W (1989) Evolutionary relationship of psbA genes from cyanobacteria, cyanelles and plastids. Curr Genet 15:335–340

    Google Scholar 

  • Jukes TH, Bhushan V (1986) Silent nucleotide substitutions and G+C content of some mitochondrial and bacterial genes. J Mol Evol 24:39–44

    Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Google Scholar 

  • Kishino H, Takashi T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 31:151–160

    Google Scholar 

  • Lambert DH, Bryant DA, Stirewalt VL, Dubbs JM, Stevens E Jr, Porter RD (1985) Gene map for the Cyanophora paradoxa cyanelle genome. J Bacteriol 164:659–644

    Google Scholar 

  • Lockhart PJ (1990) Inference of green chloroplast origins. PhD thesis, University of Sydney

  • Maid U, Valentin K, Zetsche K (1990) The psbA-gene from a red alga resembles those from cyanobacteria and cyanelles. Curr Genet 17:255–259

    Google Scholar 

  • Maxwell ES, Liu J, Shively JS (1986) Nucleotide sequences of Cyanophora paradoxa cellular and cyanelle-associated 5S ribosomal RNAs: the cyanelle as a potential intermediate in plastid evolution. J Mol Evol 23:300–304

    Google Scholar 

  • McCarn DF, Whitaker RA, Alam J, Vrba JM, Curtis SE (1988) Genes encoding the alpha, beta, delta and four F0 subunits of ATP synthase constitute an operon in the cyanobacterium Anabaena sp. PCC 7120. J Bacteriol 170:3448–3458

    Google Scholar 

  • Ming-Qun X, Scott KD, Goodrich-Blair H, Nierzwicki-Bauer SA, Shub DA (1990) Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in cyanobacteria. Science 250:1566–1570

    Google Scholar 

  • Morden CW, Golden SS (1989) psbA genes indicate common ancestry of prochlorophytes and chloroplasts. Nature 337:382–385

    Google Scholar 

  • Muto A, Osawa S (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 84:166–169

    Google Scholar 

  • Ozeki H, Ohyama K, Inokuchi H, Fukuzawa H, Kohchi T, Sano T, Nakahigashi K, Umesono K (1987) Genetic system of chloroplasts. Cold Spring Harbor Symp Quant Biol 52:791–803

    Google Scholar 

  • Palmer JD, Thompson WF (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeat is lost. Cell 29:537–550

    Google Scholar 

  • Palumbi SR (1989) Rates of molecular evolution and the fraction of nucleotide positions free to vary. J Mol Evol 29:180–187

    Google Scholar 

  • Penny D, Hendy M, Zimmer EA, Hanby RK (1990) Trees from sequences: panacea or Pandora's box? Aust Syst Bot 3:21–38

    Google Scholar 

  • Prager EM, Wilson AC (1988) Ancient origin of lactalbumin from lysozyme: analysis of DNA and amino acid sequences. J Mol Evol 27:326–335

    Google Scholar 

  • Saccone C, Pesole G, Preparata G (1989) DNA microenvironments and the molecular clock. J Mol Evol 29:407–411

    Google Scholar 

  • Shinozaki K, Yamada C, Takahata N, Sugiura M (1983) Molecular cloning and sequence analysis of the cyanobacterial gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 80:4050–4054

    Google Scholar 

  • Sidow A, Wilson AC (1990) Compositional statistics: an improvement of evolutionary parsimony and its application to deep branches in the tree of life. J Mol Evol 31:51–68

    Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243:75–77

    Google Scholar 

  • Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85:2653–2657

    Google Scholar 

  • Trench RK (1982) Physiology, biochemistry, and ultrastructure of cyanellae. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol. 1. Elsevier, Amsterdam, pp 257–288

    Google Scholar 

  • Turner S, Burger-Wiersma T, Giovannoni SJ, Mur LR, Pace NR (1989) The relationship of a prochlorophyte Prochlorothrix hollandica to green chloroplasts. Nature 337:380–382

    Google Scholar 

  • Wasmann C, Loeffelhardt W, Bohnert HJ (1987) Cyanelles: organization and molecular biology. In: Fay P, van Baalen CV (eds) The cyanobacteria. Elsevier, Amsterdam, pp 303–325

    Google Scholar 

  • Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Google Scholar 

  • Zurawski G, Clegg MT (1987) Evolution of higher-plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. Annu Rev Plant Physiol 39:391–418

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: C.J. Howe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockhart, P.J., Howe, C.J., Bryant, D.A. et al. Substitutional bias confounds inference of cyanelle origins from sequence data. J Mol Evol 34, 153–162 (1992). https://doi.org/10.1007/BF00182392

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00182392

Key words

Navigation