Skip to main content
Log in

Study of the variations in length of the anterior cruciate ligament during flexion of the knee: use of a 3D model reconstructed from MRI sections

Etude des variations de longueur du ligament croisé antérieur, lors de la flexion du genou : utilisation d'un modèle 3D reconstruit à partir de coupes IRM

  • Original Articles
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Summary

The aim of this study is to suggest an anatomic study of the modifications of the length of the anterior cruciate ligament (ACL) and its bundles during flexion with the aid of a 3D computerized model of the knee in a living subject. The method of evaluation suggested is a 3D computerized reconstruction based on MRI sections, reproducing the movement of flexion of the knee from 0 to 75°. Twenty-one sections were made for each of the 13 positions of flexion. The reconstruction of Delaunay and the realignment of each position provided a 3D model which allowed monitoring of a bony point during the movement. By knowing the relative displacement of the ligamentous attachments it was possible to define the biometry of the ligament by calculating the length of the bundles of the ACL in each position and to demonstrate the variations in length during the movement. The mean length of the ligament was 3.4 mm. The anteromedial bundle was longer by 30% compared with the other two bundles. During flexion the anteromedial bundle was not much modified (this feature seems to provide a reference position for a ligamentoplasty), the posterolateral bundle became taut after 30°, and the intermediate bundle relaxed from the beginning of movement. Based on the data from the literature, this method allows an anatomic approach to the ACL, bundle by bundle, during flexion movement.

Résumé

Ce travail a pour but de proposer à l'aide d'un modèle informatique 3D du genou chez un sujet vivant une étude anatomique des modifications de longueur du ligament croisé antérieur (LCA) et de ses faisceaux au cours de la flexion. La méthode d'évaluation proposée est une reconstruction informatique 3D, à partir de coupes IRM, reproduisant le mouvement de flexion du genou de 0 à 75°. Vingt-et-une coupes ont été réalisées pour chacune des 13 positions de flexion. La reconstruction de Delaunay et le recalage de chaque position permettent d'obtenir un modèle 3D. Ce modèle permet le suivi d'un point osseux lors du mouvement. En connaissant le déplacement relatif des insertions ligamentaires, il est possible de préciser la biométrie du ligament en calculant la longueur des faisceaux du LCA à chaque position, de mettre en évidence les variations de longueur au cours du mouvement. La longueur moyenne du ligament était de 34 mm. Le faisceau antéro-médial était plus long de 30 % par rapport aux deux autres faisceaux. Lors de la flexion, le faisceau antéro-médial était peu modifié (cette caractéristique semblait en faire une position de référence pour une ligamentoplastie), le faisceau postéro-latéral se tendait à partir de 30°, le faisceau intermédiaire se détendait dès le début du mouvement. En retrouvant les données de la littérature, cette méthode permet une approche anatomique du LCA faisceau par faisceau lors du mouvement de flexion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amis AA, Scammel BE (1991) Functional anatomy of the ACL. J Bone Joint Surg 75B: 812–817

    Google Scholar 

  2. Arnoczky SP (1983) Anatomy of the anterior cruciate ligament. Clin Orthop : 19–25

  3. Berchuck M, Andriacchi T, Bach B, Reider B (1990) Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg (A) 72: 871–877

    Google Scholar 

  4. Blankevoort L, Huiskes R, De Lange A (1991) Recruitment of knee joint ligaments. J Biomech Eng 113: 95–103

    Google Scholar 

  5. Blankevoort L, Kuiper J, Huiskes R, Grootenboer H (1991) Articular contact in a three-dimensional model of the knee. J Biomech 24: 1019–1031

    Google Scholar 

  6. Boissonnat J (1988) Shape reconstruction from planar cross-sections. Computer vision, graphics and image processing 44: 1–29

    Google Scholar 

  7. Bousquet G, Le Béguec P, Girardin P (1991) Les laxités chroniques du genou. (1ère Edition.), Medsi/McGraw-Hill, Paris

    Google Scholar 

  8. Chambat P (1985) Le ligament croisé antérieur. In: Cahiers d'enseignement de la SOFCOT. Conférences d'enseignement 1985, ES Françaises, Paris, pp 79–101.

    Google Scholar 

  9. Clancy WG (1985) Intra articular reconstruction of the anterior cruciate ligament. Orthop Clin North Am 16: 181–189

    Google Scholar 

  10. Eckstein F, Sittek H, Milz S, Putz R, Reiser M (1994) The morphology of articular cartilage assessed by magnetic resonance imaging (MRI). Reproducibility and anatomical correlation. Surg Radiol Anat 16: 429–38

    Google Scholar 

  11. Fu F, Harner C, Johnson D, Miller M, Woo S (1993) Biomechanics of knee ligaments, basic concepts and clinical application. J Bone Joint Surg 75A: 1716–1727

    Google Scholar 

  12. Geiger B (1993) Construction et utilisation des modèle d'organes en yue de l'assistance au diagnostic et aux interventions chirurgicales. PhD Thesis, Ecole des Mines de Paris, Paris

    Google Scholar 

  13. Gely P, Droin G, Thiry P, Tremblay G (1984) Torsion and bending imposed on a new anterior cruciate ligament prosthesis during knee flexion: an evaluation method. J Biomech Eng 106: 285–294

    Google Scholar 

  14. Gerber C, Matter P (1983) Biomechanical analysis of the knee after rupture of the anterior cruciate ligament and its primary repair. J Bone Joint Surg 65B: 391–399

    Google Scholar 

  15. Hart R, Mote C, Skinner H (1991) A finite helical axis as a landmark for kinematic reference of the knee. J Biomech Eng 113: 215–222

    Google Scholar 

  16. Hefzy MS, Grood E, Noyes F (1989) Factors affecting the region of most isometric femoral attachments, part II: the anterior cruciate ligament. Am J Sports Med 17: 208–216

    Google Scholar 

  17. Huber H, Mattheck C (1988) The cruciate ligaments and their effect on the kinematics of the human knee. Med Biol Eng Comput 26: 647–653

    Google Scholar 

  18. Kapandji I (1980) Physiologie articulaire. Membre inférieur. Maloine, Paris

    Google Scholar 

  19. Kennedy J, Hawkin R, Willis R, Danylchuk R (1976) Tension studies of the human knee ligament. J Bone Joint Surg 58A: 350–355

    Google Scholar 

  20. Landjerit B, Bisserie M (1992) Cinématique spatiale de l'articulation fémoro-tibiale du genou humain: caractérisation expérimentale et implications chirurgicales. Acta Orthop Belg 2: 147–158

    Google Scholar 

  21. Markolf K, Gorek J, Kabo J, Shapiro M (1990) Direct measurement of resultant forces in the anterior cruciate ligament. J Bone Joint Surg 72A: 557–567

    Google Scholar 

  22. Migaud H, Gougeon F, Diop A, Lavaste F, Duquennoy A (1995) Analyse in vivo de la cinématique du genou: comparaison de quatre types de prothèses totales. Rev Chir Orthop 81: 198–208

    Google Scholar 

  23. Müller W (1994) The Knee. Springer-Verlag, New York

    Google Scholar 

  24. Norwood LA, Cross MJ (1979) Anterior cruciate ligament: functional anatomy of its bundles in rotatory instabilities. Am J Sports Med 7: 23–6

    Google Scholar 

  25. Noyes F, Butler D, Grood E, Zernicke R, Hefzy M (1984) Biomechanical analysis of human ligament grafts used in knee ligament repairs and reconstructions. J Bone Joint Surg 66A: 344–352

    Google Scholar 

  26. Noyes F, Keller C, Grood E, Butler D (1984) Advances in the understanding of knee ligament injury, repair, and rehabilitation. Med Sci Sports Exerc 16: 427–443

    Google Scholar 

  27. Odensten M, Gillquist J (1985) Functional anatomy of the ACL and a rationale for reconstruction. J Bone Joint Surg 67A: 257–262

    Google Scholar 

  28. Sapega A, Moyer R, Schneck C, Komalahiranya N (1990) Testing for isometry during reconstruction of the anterior cruciate ligament. J Bone Joint Surg 72A: 259–267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boisgard, S., Levai, J.P., Geiger, B. et al. Study of the variations in length of the anterior cruciate ligament during flexion of the knee: use of a 3D model reconstructed from MRI sections. Surg Radiol Anat 21, 313–317 (1999). https://doi.org/10.1007/BF01631331

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01631331

Key words

Navigation