Skip to main content
Log in

Development of a new modular titanium femoral prosthesis consisting of a head and shaft component. Indications, operation and optimization of the tapered socket connection

  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Summary

The development and clinical indications of a new modular femoral endoprosthesis consisting of a head and shaft component is discribed. Components are available in different lengths and diameters and therefore can be joined individually depending on the patients anatomy and surgery required. Both parts are joined by a unique optimized taper socket with a groove, avoiding fretting and corosion. Fatigue tests showed no loosening of the tapered connection and no prosthesis fracture. The advantage of this new modular prosthesis is diaphyseal stabilization, if necessairy by two distal interlocking screwes. Indications are revisions, pertrochanteric femoral and neoplastic fractures if cementless bridging of boney defects in the calcar region must be achieved. Further indications are femoral neck fraktures and coxarthrosis if stable diaphyseal fixation is required. The material and surface structure as well as the philosophie of the distal fixation are discussed.

Résumé

Les auteurs décrivent une nouvelle prothèse fémorale modulaire associant une prothèse conventionnelle et un clou centro-médullaire. La prothèse est constituée d’une pièce céphalique et d’une partie diaphysaire fixées ensemble par un cône morse. Chaque pièce est modulaire selon les besoins en longueur et en diamètre. L’antéversion de la pièce céphalique est libre. Les pièces diaphysaires ont une courbure sagittale anatomique et sont creuses, permettant l’utilisation d’un guide centro-médullaire. Les pièces diaphysaires longues peuvent être verrouillées. Les pièces céphalique et diaphysaire sont en alliage de titane et la pièce diaphysaire a une surface grenaillée dans sa partie proximale. Le cône morse a été optimisé par l’adjonction d’une rainure qui a diminué l’usure par abrasion lors des tests de fatigue. Aucun démontage de la jonction intraprothétique et aucune fracture dé tige n’a été rencontrée lors de c es tests. La technique opératoire n’offre aucune particularité. Cent vingtquatre prothèses ont été implantées depuis 1990, principalement pour des fractures du col fémoral et des changements de prothèses totales de hanche. Les résultats cliniques sont en cours d’investigation. D’autres indications plus rares ont été choisies : pseudarthrose per-trochantérienne, fracture sur coxarthrose, chirurgie métastatique. Cette prothèse permet un ancrage diaphysaire stable dans les pertes de substance de l’extrémité supérieure du fémur, et autorise ainsi la repousse osseuse dans cette zone, spontanée ou après greffe osseuse, et la fixation proximale secondaire. L’optimisation du cône morse a permis de diminuer de façon considérable l’usure par abrasion. La modularité de la prothèse permet de s’adapter à toutes les morphologies et toutes les situations cliniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergmann G, Graichen F, Rohlmann A (1996) Die Belastung des Hüftgelenks — ein Überblick. Med Orth Tech 116: 143–150

    Google Scholar 

  2. Biegler FB, Reuben JD, Harrigan TP, Hou FJ, Akin JE (1995) Effect of porous coating and loading conditions on total hip femoral stem stability. J Arthroplasty 10, 6: 839–847

    Article  PubMed  CAS  Google Scholar 

  3. Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding. Clin Orthop 274: 79–96

    PubMed  Google Scholar 

  4. Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC (1980) The optimum pore size for the fixation of porous — surfaced metal implants by the ingrowth of bone. Clin Orthop 150: 263–270

    PubMed  Google Scholar 

  5. Bobyn JD, Tanzer M, Krygier JJ, Dujovne AR, Brooks C (1994) Concerns with modularity in total hip arthroplasty. Clin Orthop 298: 27–36

    PubMed  Google Scholar 

  6. Brown IW, Ring PA (1985) Osteolytic changes in the upper femoral shaft following porous-coated hip replacement. J Bone Joint Surg 67-B, 2: 218–221

    Google Scholar 

  7. Brown SA, Flemming JS, Kawalec JS, Placko HE, Vassaux C, Merritt K, Payer JH, Kraay MJ (1995) Fretting corrosion accelerates crevice corrosion of modular hip tapers. J Appl Biomat 6:19–26

    Article  CAS  Google Scholar 

  8. Bugbee WD, Culpepper WJ, Engh CA, Engh CA (1997) Long term, clinical consequences of stress-shielding after total hip arthroplasty without cement. J Bone and Joint Surg 79-A, 7: 1007–1012

    Google Scholar 

  9. Cameron H (1993) The 3-6-year results of a modular noncemented low-bending stiffness hip implant. J Arthroplasty 8, 3: 239–243

    Article  PubMed  CAS  Google Scholar 

  10. Cameron HU (1994) The two to six year results with a proximally modular noncemented total hip replacement used in hip revisions. Clin Orthop 298: 47–53

    PubMed  Google Scholar 

  11. Campbell ACL, Rorabeck CH, Bourne CH, Chess D, Nott L (1992) Tigh pain after cementless hip arthroplasty. J Bone Joint Surg 74-B: 63–66

    Google Scholar 

  12. Chandler HP, Ayres DK, Tan RC, Anderson IC, Varma AK (1995) Revision total hip replacement using the S-ROM femoral component. Clin Orthop 319: 130–140

    PubMed  Google Scholar 

  13. Eingartner C, Volkmann R, Pütz M, Weller S (1997) Uncemented revision stem for biological osteosynthesis in periprosthetic femoral fractures. Int Orthop 21: 25–29

    Article  PubMed  CAS  Google Scholar 

  14. Engh CA, Massin P (1989) Cementless total hip arthroplasty using the anatomic medullary locking stem. Clin Ortop and Related Res 249: 141–158

    Google Scholar 

  15. Engh CA, Bobyn JD (1988) The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthrolplasty. Clin Orthop 231: 7–28

    PubMed  Google Scholar 

  16. Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding and clinical results. J Bone Joint Surg 69-B, 1: 45–55

    Google Scholar 

  17. Evans B, Salvati EA, Huo MH, Huk OL (1993) The rationale for cemented total hip arthroplasty. Orthop Clin North Am 24, 4: 599–610.

    PubMed  CAS  Google Scholar 

  18. Fitzgerald RH, Brindley GW, Kavanagh BF (1988) The uncemented total hip arthroplasty. Intraoperative femoral fractures. Clin Orthop 235: 61–66

    PubMed  Google Scholar 

  19. Gebauer D, Refior HJ, Haake M (1990) Experimentelle Untersuchungen zum Einfluss operationstechnischer Fehler auf die Primärstabilität zementloser Hüftendopro-thesen. Z Orthop 128: 100–107

    Article  PubMed  CAS  Google Scholar 

  20. Gross AE, Allan DG, Lavoie GJ, Oakeshott RD (1993) Revision arthroplasty of the proximal femur using allograft bone. Orthop Clin North Am 24, 4: 705–715

    PubMed  CAS  Google Scholar 

  21. Grünig R, Morscher E, Ochsner PE (1997) Three to seven year results with the uncemented SL femoral revision prosthesis. Arch Orthop Trauma Surg 116:187–197

    PubMed  Google Scholar 

  22. Harman MK, Toni A, Cristofoloni L, Viceconti M (1995) Initial stability of uncemented hip stem: anin vitro protocol to measure torsional interface motion. Med Eng Phys 17: 163–171

    Article  PubMed  CAS  Google Scholar 

  23. Hartwig CH, Böhm P, Czech U, Reize P, Küsswetter W (1996) The Wagner revision stem in alloarthroplasty of the hip. Arch Orthop Trauma Surg 115: 5–9

    Article  PubMed  CAS  Google Scholar 

  24. Head WC, Bauk DJ, Emerson RH (1995) Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin Orthop 311: 85–90.

    PubMed  Google Scholar 

  25. Huiskes R, Weinans H, Dalstra M (1989) Adaptive bone remodeling and biomechanical design considerations for noncemented total hip arthroplasty. Orthop 12, 9: 1255–1267

    CAS  Google Scholar 

  26. Hungerford DS, Jones LC (1993) The rationale for cementless total hip replacement. Orthop Clin North Am 24, 4: 617–626

    PubMed  CAS  Google Scholar 

  27. Hussamy O, Lachiewicz PF, Hill C (1994) Revision total hip arthroplasty with BIAS femoral component. J Bone Joint Surg 76-A, 8: 1137–1148

    Google Scholar 

  28. Indong OH, Harris WH (1978) Proximal strain distribution in the loaded femur. J Bone Joint Surg 60 A-1: 75–85

    Google Scholar 

  29. Kolstad K, Adalbert G, Mallmin H, Milbrink, Sahlstedt B (1996) The Wagner revision stem for severe osteolysis. Acta Orthop Scand 67, 6: 541–544

    PubMed  CAS  Google Scholar 

  30. Ludwig FJ, Melzer C, Backofen D, Kölbel R (1996) Kriterien zur radiologischen Beurteilung zementfreier Hüftendoprothesen am Beispiel des Spotorno-Schaftes. Unfallchirurg 99: 750–757

    Article  PubMed  CAS  Google Scholar 

  31. Mann KA, Ayers DC, Damron TA (1997) Effects of stem length on mechanics of the femoral hip component after cemented revision. J Orthop Res 15, 1: 62–68

    Article  PubMed  CAS  Google Scholar 

  32. Moreland JR, Bernstein ML (1995) Femoral revision hip arthroplasty with uncemented, porous-coated stems. Clin Orthop 319: 141–150

    PubMed  Google Scholar 

  33. Morrey BF, Kavanagh BF (1992) Complications of revision of the femoral component of total hip arthroplasty. J Arthroplasty 7: 71

    Article  PubMed  CAS  Google Scholar 

  34. Noble PC, Alexander JW, Lindahl LJ, Yew DT, Granberry WM, Tullos HS (1988) The anatomic basis of femoral component design. Clin Orthop 235: 148–165

    PubMed  Google Scholar 

  35. Ohl MD, Whiteside LA, McCarthy DS, White SE (1993) Torsional fixation of a modular femoral hip component. Clin Orthop 287: 135–141

    PubMed  Google Scholar 

  36. Otani T, Whiteside LA, White SE, McCarthy DS (1995) Reaming technique of the femoral diaphysis in cementless total hip arthroplasty. Clin Orthop 311: 210–221

    PubMed  Google Scholar 

  37. Pilliar RM, Lee JM, Maniatopoulos C (1986) Observation on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop 208: 108–113

    PubMed  Google Scholar 

  38. Poss R, Walker P, Spector M, Reilly DT, Robertson DD, Sledge CB (1988) Strategies for, improving fixation of femoral components in total hip arthroplasty. Clin Orthop 235: 181–194

    PubMed  Google Scholar 

  39. Raut VV, Siney PD, Wroblewski BM (1995) Cemented Charnley revision arthroplasty for severe femoral osteolysis. J Bone Joint Surg 77-B, 3: 362–365

    Google Scholar 

  40. Raut VV, Siney PD, Wroblewski BM (1996) Outcome of revision for mechanical stem failure using the cemented Charnley’s stem. J Arthroplasty 11, 4: 405–410

    Article  PubMed  CAS  Google Scholar 

  41. Retpen JB, Varmarken JE, Röck ND, Jensen JS (1992) Unsatisfactory results after repeated revision of hip arthroplasty. Acta Orthop Scand 63, 2: 120–127

    Article  PubMed  CAS  Google Scholar 

  42. Rubach HE, Harris WH (1988) Revision of non-septic loose cemented femoral components using modern cemented techniques. J Arthroplasty 3: 241

    Article  Google Scholar 

  43. Smith JA, Dunn HK, Manaster BJ (1997) Cementless femoral revision arthroplasty. J Arthroplasty 12, 2: 194–201

    Article  PubMed  CAS  Google Scholar 

  44. Stern M, Angerman A (1987) Comminuted intertrochanteric fractures treated with a Leinbach prosthesis. Clin Orthop 218: 75–80

    PubMed  Google Scholar 

  45. Stern M, Goldstein TB (1977) The use of the Leinbach prosthesis in intertrochanteric fractures of the hip. Clin Orthop 128: 325–331

    PubMed  Google Scholar 

  46. Stromberg CN, Herberts P, Aknfelt L (1988) Revision total hip arthroplasty in patients younger than 55 years old: clinical and radiological results after 4 years. J Arthroplasty 3: 47

    PubMed  CAS  Google Scholar 

  47. Sugiyama H, Whiteside LA, Kaiser AD (1989) Examination of rotational fixation of the femoral component in total hip arthroplasty. Clin Orthop 249: 122–128

    PubMed  Google Scholar 

  48. Turner RH, Mattingly DA, Scheller A (1987) Femoral revision total hip arthroplasty using a long stem femoral component: clinical and radiographic analysis. J Arthroplasty 3: 247

    Google Scholar 

  49. Viceconti M, Baleani M, Squarzoni S, Toni A (1997) Fretting wear in a modular neck hip prosthesis. J Biomed Res 35: 207–216

    Article  CAS  Google Scholar 

  50. Wagner H, Wagner M (1993) Femur-Revisionsprothese. Z Orthop 131: 574–577

    PubMed  CAS  Google Scholar 

  51. Willert HG, Puls P (1972) Die Reaktion des Knochens auf Knochenzement bei der AlloArthroplastik der Hüfte. Arch Orthop Unfall Chir 72: 33–71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andress, H.J., Lob, G., Kahl, S. et al. Development of a new modular titanium femoral prosthesis consisting of a head and shaft component. Indications, operation and optimization of the tapered socket connection. Eur J Orthop Surg Traumatol 9, 13–18 (1999). https://doi.org/10.1007/BF02427763

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02427763

Key words

Navigation