Skip to main content

Advertisement

Log in

Identification of high-risk breast cancer patients from genetic changes of their tumors

  • Original Articles
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

To identify the genetic prognostic markers for breast cancer, we analyzed loss of heterozygosity (LOH) at 11p, 16q, 17p, 17q, and 18q, as well as amplification of theERBB2, INT2, andMYC genes, in 131 patients with breast carcinoma, 49 of whom had lymph node involvement, but none of whom had distant metastases. Among the several chromosome arms tested, LOH at 17q was correlated with lymph node metastasis. Amplification of theERBB2, MYC, andINT2 genes was found more frequently in tumors from patients with lymph node metastases than in tumors from those without lymph node metastases. Univariate analysis demonstrated that LOH at 17q andINT2 amplification were factors influencing disease-free survival (DFS). A multivariate analysis was performed on 89 tumors that were able to be evaluated for both LOH at 17q andINT2 amplification, and the results showed that patients who had tumors with these genetic changes were more likely to have a poor prognosis. The findings of this study suggest that investigating genetic changes, in addition to conventional clinicopathologic factors, may contribute to defining groups of breast cancer patients with differences in prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS (1996) Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274:2057–2059

    Article  PubMed  CAS  Google Scholar 

  2. Devilee P, Van den Broek M, Kuipers-Dijkshoorn N, Kolluri R, Khan PM, Pearson PL, Cornelisse CJ (1989) At least four different chromosomal regions are involved in loss of heterozygosity in human breast cancer. Genomics 5:554–560

    Article  PubMed  CAS  Google Scholar 

  3. Sato T, Tanigami A, Yamakawa K, Akiyama F, Kasumi F, Sakamoto G, Nakamura Y (1990) Allelotype of breast cancer: cumulative allele losses promote tumor progressin in primary breast cancer. Cancer Res 50:7184–7189

    PubMed  CAS  Google Scholar 

  4. Andersen TI, Gaustad A, Ottestad L, Farrants GW, Nesland JM, Tveit KM, Borresen AL (1992) Genetic alterations of the tumor suppressor gene regions 3p, 11p, 13q, 17p, and 17q in human breast carcinomas. Genes Chrom Cancer 4:113–121

    Article  PubMed  CAS  Google Scholar 

  5. Driouch K, Briffod M, Bieche I, Champeme MH, Lidereau R (1998) Location of several putative genes possibly involved in human breast cancer progression. Cancer Res 58:2081–2086

    PubMed  CAS  Google Scholar 

  6. Berns EMJJ, Klijn JGM, Putten WLJ, Staveren IL, Portengen H, Foekens JA (1992)c-myc amplification is a better prognostic factor thanHer2/neu amplification in primary breast cancer. Cancer Res 52:1107–1113

    PubMed  CAS  Google Scholar 

  7. Lonn U, Lonn S, Nilsson B, Stenkvist B (1995) Prognostic value of erb-B2 and myc amplification in breast cancer imprints. Cancer 75:2681–2687

    Article  PubMed  CAS  Google Scholar 

  8. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neuoncogene. Science 235:177–182

    Article  PubMed  CAS  Google Scholar 

  9. Tsuda H, Hirohashi S, Shimosato Y, Hirota T, Tsugane S, Yamamoto H, Miyajima N, Toyoshima K, Yamamoto T, Yokota J, Yoshida T, Sakamoto H, Terada M, Sugimura T (1989) Correlation between long-term survival in breast cancer patients and amplification of two putative oncogene-coamplification units:hst-1/INT2 andc-erbB-2/ear-1. Cancer Res 49:3104–3108

    PubMed  CAS  Google Scholar 

  10. Genuardi M, Tsihira H, Anderson DE, Saunders GF (1989) Distal deletion of chromosome 1p in ductal carcinoma of the breast. Am J Hum Genet 45:73–82

    PubMed  CAS  Google Scholar 

  11. Chen LC, Dollbaum C, Smith HS (1989) Loss of heterozygosity on chromosome 1q in human breast cancer. Proc Nat1 Acad Sci USA 86:7204–7207

    Article  CAS  Google Scholar 

  12. Ali IU, Lidereau R, Theillet C, Callahan R (1987) Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. Science 238:185–188

    Article  PubMed  CAS  Google Scholar 

  13. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y (1991) Accumulation of genetic alterations and progression of primary breast cancer. Cancer Res 51:5794–5799

    PubMed  CAS  Google Scholar 

  14. Lindblom A, Rotstein S, Skoog L, Nordenskjold M, Larsson C (1993) Deletions on chromosome 16 in primary familial breast carcinomas are associated with development of distant metastases. Cancer Res 53:3707–3711

    PubMed  CAS  Google Scholar 

  15. Mackay J, Steel CM, Elder PA, Forrest APM, Evans HJ (1988) Allele loss on short arm of chromosome 17 breast cancer. Lancet 2:1384–1385

    Article  PubMed  CAS  Google Scholar 

  16. Cropp CS, Lidereau R, Campbell G, Champene MH, Callahan R (1990) Loss of heterozygosity on chromosomes 17 and 18 in breast carcinoma: two additional regions identified. Proc Natl Acad Sci USA 87:7737–7741

    Article  PubMed  CAS  Google Scholar 

  17. Takita K, Sato T, Miyagi M, Watatani M, Akiyama F, Sakamoto G, Kasumi F, Abe R, Nakamura Y (1992) Correlation of loss of alleles on the short arms of chromosomes 11 and 17 with metastasis of primary breast cancer to lymph nodes. Cancer Res 52:3914–3917

    PubMed  CAS  Google Scholar 

  18. Nagayama K, Watatani M (1993) Analysis of genetic alterations related to the development and progression of breast carcinoma. Jpn J Cancer Res 84:1159–1164

    PubMed  CAS  Google Scholar 

  19. Harada Y, Katagiri T, Ito I, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y, Emi M (1994) Genetic studies of 457 breast cancers. Cancer 74:2281–2286

    Article  PubMed  CAS  Google Scholar 

  20. Kerangueven F, Noguchi T, Coulier F, Allione F, Wargniez V, Simony-Lafontaine J, Longy M, Jacquemier J, Sobol H, Eisinger F, Birnbaum D (1997) Genome-wide search for loss of heterozygosity shows extensive genetic diversity of human breast carcinomas. Cancer Res 57:5469–5474

    PubMed  CAS  Google Scholar 

  21. Watatani M, Nagayama K, Imanishi Y, Kurooka K, Wada T, Inui H, Hirai K, Ozaki M, Yasutomi M (1993) Genetic alterations on chromosome 17 in human breast cancer: relationship to clinical features and DNA ploidy. Breast Cancer Res Treat 28:231–239

    Article  PubMed  CAS  Google Scholar 

  22. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684–1689

    Article  PubMed  CAS  Google Scholar 

  23. Varesco L, Caligo MA, Simi P, Black DM, Nardini V, Casarino L, Rocchi M, Ferrara G, Solomon E, Bevilacqua G (1992) The NM23 gene maps to human chromosome band 17q22 and shows a restriction fragment length polymorphism with BglII. Genes Chrom Cancer 4:84–88

    Article  PubMed  CAS  Google Scholar 

  24. Tsukamoto K, Ito N, Yoshimoto M, Kasumi F, Akiyama F, Sakamoto G, Nakamura Y, Emi M (1998) Allelic loss on chromosome 1p is associated with progression and lymph node metastasis of primary breast carcinoma. Cancer 82:317–322

    Article  PubMed  CAS  Google Scholar 

  25. Minobe K, Onda M, Iida A, Kasumi F, Sakamoto G, Nakamura Y, Emi M (1998) Allelic loss on chromosome 9q is associated with lymph node metastasis of primary breast cancer. Jpn J Cancer Res 89:916–922

    PubMed  CAS  Google Scholar 

  26. Nagai MA, Medeiros AC, Brentani MM, Brentani RR, Marques LA, Mazoyer S, Mulligan LM (1995) Five distinct deleted regions on chromosome 17 defining different subsets of human primary breast tumors. Oncology 52:448–453

    Article  PubMed  CAS  Google Scholar 

  27. Cropp CS, Champeme MH, Lidereau R, Callahan R (1993) Identification of three regions on chromosome 17q in primary human breast carcinomas which are frequently deleted. Cancer Res 53:5617–5619

    PubMed  CAS  Google Scholar 

  28. Callahan R (1998) Somatic mutations that contribute to breast cancer. Biochem Soc Symp 63:211–221

    PubMed  CAS  Google Scholar 

  29. Phelan CM, Borg A, Cuny M, Crichton DN, Baldersson T, Andersen TI, Caligo MA, Lidereau R, Lindblom A, Seitz S, Kelsell D, Hamann U, Rio P, Thorlacius S, Papp J, Olah E, Ponder B, Bignon YJ, Scherneck S, Barkardottir R, Borresen DA, Eyfjord J, Theillet C, Thompson AM, Larsson C (1998) Consortium study on 1 280 breast carcinomas: allelic loss on chromosome 17 targets subregions associated with family history and clinical parameters. Cancer Res 58:1004–1012

    PubMed  CAS  Google Scholar 

  30. Studzinski GP, Godyn JJ (1995) The genetic basis for emergence and progression of breast cancer. In: Donegan WL, Spratt JS (eds) Cancer of the breast. Saunders, Philadelphia, pp 309–316

    Google Scholar 

  31. Borg A, Sigurdsson H, Clark GM, Ferno M, Fuqua SA, Olsson H, Killander D, McGurie WL (1991) Association of INT2/HST1 coamplification in primary breast cancer with hormonedependent phenotype and poor prognosis. Br J Cancer 63:136–142

    Article  PubMed  CAS  Google Scholar 

  32. Champeme MH, Bieche I, Hacene K, Lidereau R (1994) INT2/ FGF3 amplification is a better independent predictor of relapse than c-myc and c-erbB-2/neu amplification in primary human breast cancer. Mod Pathol 7:900–905

    PubMed  CAS  Google Scholar 

  33. Pauley RJ, Gimotty PA, Paine TJ, Dawson PJ, Wolman SR (1996) INT2 and ERBB2 amplification and ERBB2 expression in breast tumors from patients with different outcomes. Breast Cancer Res Treat 37:65–76

    Article  PubMed  CAS  Google Scholar 

  34. Fioravanti L, Cappelletti V, Coradini D, Miodini P, Borsani G, Daidone MG, Di Fronzo G (1997) INT2 oncogene amplification and prognosis in node-negative breast carcinoma. Int J Cancer 74:620–624

    Article  CAS  Google Scholar 

  35. Tsuda H, Sakamaki C, Tsugane S, Fukutomi T, Hirohashi S (1998) A prospective study of the significance of gene and chromosome alterations as prognostic indicators of breast cancer patients with lymph node metastases. Breast Cancer Res Treat 48:21–32

    Article  PubMed  CAS  Google Scholar 

  36. Schuuring E, Verhoeven E, Mooi WJ, Michalides RJ (1992) Identification and cloning of two overexpressed genes, U21B31/PRAD1 and EMS1, within the amplified chromosome 11q13 region in human carcinomas. Oncogene 7:355–361

    PubMed  CAS  Google Scholar 

  37. Hui R, Campbell DH, Lee CS, McCaul K, Horsfall DJ, Musgrove EA, Daly RJ, Seshadri R, Sutherland RL (1997) EMS1 amplification can occur independently of CCND1 orINT2 amplification at 11q13 and may identify different phenotypes in primary breast cancer. Oncogene 15:1617–1623

    Article  PubMed  CAS  Google Scholar 

  38. Ito I, Yoshimoto M, Iwase T, Watanabe S, Katagiri T, Harada Y, Kasumi F, Yasuda S, Mitomi T, Emi M, Nakamura Y (1995) Association of genetic alterations on chromosome 17 and loss of hormone receptors in breast cancer. Br J Cancer 71:438–441

    Article  PubMed  CAS  Google Scholar 

  39. Wellings SR (1980) A hypothesis of the origin of human breast cancer from the terminal ductal lobular unit. Pathol Res Pract 166:515–535

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watatani, M., Inui, H., Nagayama, K. et al. Identification of high-risk breast cancer patients from genetic changes of their tumors. Surg Today 30, 516–522 (2000). https://doi.org/10.1007/s005950070118

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005950070118

Key Words

Navigation