Skip to main content
Log in

Hydride-trapping techniques for the speciation of arsenic

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The determination of arsenic species by the trapping of volatile hydrides prior to atomization in the light path of an atomic absorption spectrometer is described and its operation in the measurement of arsenic species in the marine environment are discussed. Examples are drawn from the analysis of Tamar estuary water and sediment interstitial (pore) waters and from studies of the temporal variation of dimethylarsenic in coastal waters. Improvements in both the design and operation of the technique have resulted in enhanced performance. Baseline resolution of inorganic arsenic, monomethylarsenic and dimethylarsenic is now possible and trimethylarsine is resolved. Ultraviolet photolysis of arsenobetaine and arsenocholine gives partial conversion to trimethylarsine oxide. This can be employed in the qualitative appraisal of the presence of trimethylarsenic species. Current detection limits (3 sigma) for inorganic, mono- and di-methylarsenic lie in the range 19 to 61 pg absolute, giving 19–61 ng/1 concentration detection limits for 1 ml samples. This can be improved even further by using larger sample volumes. The properties of the analysis system when presented with various arsenic species are described. A ca. 10% loss of arsenite occurs in samples stored at —20 °C and immediate freezing of samples in liquid nitrogen is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Howard, M. H. Arbab-Zavar, S. Apte,Est. Coastal Shelf Sci. 1984,19, 493.

    Google Scholar 

  2. A. G. Howard, S. C. Apte, S. D. W. Comber, R. J. Morris,Est. Coastal Shelf Sci. 1988,27, 427.

    Google Scholar 

  3. J. S. Edmonds, K. A. Francesconi, J. R. Cannon, C. L. Raston, B. W. Skelton, A. H. White,Tel. Lett. 1977,18, 1543.

    Google Scholar 

  4. J. R. Cannon, J. S. Edmonds, K. A. Francesconi, C. L. Raston, J. B. Saunders, B. W. Skelton, A. H. White,Aust. J. Chem. 1981,34, 787.

    Google Scholar 

  5. J. F. Lawrence, P. Michalik, G. Tam, H. B. S. Conacher,J. Agric. Food Chem. 1986,34, 315.

    Google Scholar 

  6. H. Norin, A. Christakopoulos,Chemosphere 1982,11, 287.

    Google Scholar 

  7. H. Norin, R. Ryhage, A. Christakopoulos, M. Sandstroem,Chemosphere 1983,12, 299.

    Google Scholar 

  8. J. S. Edmonds, K. A. Francesconi,Nature 1981,289, 602.

    Google Scholar 

  9. K. Jin, T. Hayashi, Y. Shibata, M. Morita,Appl. Organomet. Chem. 1988,2, 365.

    Google Scholar 

  10. J. S. Edmonds, K. A. Francesconi, J. A. Hansen,Experientia 1982,38, 643.

    Google Scholar 

  11. J. S. Edmonds, K. A. Francesconi,J C S Perkin Trans. 1983,1, 2375.

    Google Scholar 

  12. J. S. Edmonds, K. A. Francesconi,Anal. Chem. 1976,48(13), 2019.

    Google Scholar 

  13. M. O. Andreae,Anal. Chem. 1977,49(6), 820.

    Google Scholar 

  14. A. G. Howard, M. H. Arbab-Zavar,Analyst 1981,106, 213.

    Google Scholar 

  15. A. M. M. De Bettencourt,Neth. J. Sea Res. 1988,22(3), 205.

    Google Scholar 

  16. W. R. Cullen, M. Dodd,Appl. Organomet. Chem. 1988,2, 1.

    Google Scholar 

  17. A. G. Howard, S. D. W. Comber,Appl. Organomet. Chem. 1989,3, 509.

    Google Scholar 

  18. S. D. W. Comber, A. G. Howard,Anal. Proc. 1989,26, 20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, A.G., Comber, S.D.W. Hydride-trapping techniques for the speciation of arsenic. Mikrochim Acta 109, 27–33 (1992). https://doi.org/10.1007/BF01243206

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01243206

Key words

Navigation