Skip to main content
Log in

Conservation of rDNA inPolystichum (Dryopteridaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Restriction site variation in the nuclear 18S–25S ribosomal RNA genes (rDNA) was analyzed hierarchically in a species complex in the fern genusPolystichum. Two distinct rDNA repeat types were present in all individuals ofPolystichum examined. No variation was detected among individuals within a population ofP. munitum, among populations ofP. munitum orP. imbricans, or among the six diploid species ofPolystichum from North America, including the circumborealP. lonchitis. The identity of rDNA repeats across all six North American species ofPolystichum may reflect an overall similarity of the nuclear genomes of these species, an observation supported by isozyme data as well. However, this nuclear similarity contrasts sharply with the highly divergent chloroplast genomes of these six species. The conservative nature of the rDNA inPolystichum also is in contrast to the much more variable rDNAs of most angiosperms investigated. Perhaps the tempo and mode of evolution of rDNA in ferns differ from those of angiosperms; however, the data base for fern rDNA is very small. Furthermore, the number of repeat types per individual is consistent with a diploid, rather than polyploid, condition despite the high chromosome number (n = 41) of these plants, although homogenization of multiple, divergent rRNA genes cannot be disproven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appels, R., Dvorak, J., 1982: The wheat ribosomal DNA spacer region: its structure and variation in populations and species. — Theor. Appl. Genet.63: 337–348.

    Google Scholar 

  • —, 1986: rDNA: evolution over a billion years. — InDutta, S. K., (Ed.): DNA systematics II: plants, pp. 81–135. — Boca Raton, FL: CRC Press.

    Google Scholar 

  • Bingham, E. T., Cutter, G. L., Beversdorf, W. D., 1976: Creating genetic variability: tissue culture and chromosomal manipulation. — InHill, L. D., (Ed.): World soybean research, pp. 246–261. — Danville, IL: Interstate Printers.

    Google Scholar 

  • Dover, G. A., Flavell, R. B., 1984: Molecular coevolution: DNA divergence and the maintenance of function. — Cell38: 622–623.

    PubMed  Google Scholar 

  • Doyle, J. J., Beachy, R. N., 1985: Ribosomal gene variation in soybean (Glycine max) and its relatives. — Theor. Appl. Genet.70: 369–376.

    Google Scholar 

  • —, —, —, 1984: Evolution of rDNA inClaytonia polyploid complexes. — InGrant, W. F., (Ed.): Plant biosystematics, pp. 321–341. — Toronto: Academic Press.

    Google Scholar 

  • —, 1989: 5S Nuclear ribosomal gene variation in theGlycine tomentella polyploid complex (Leguminosae). — Syst. Bot.14: 398–407.

    Google Scholar 

  • —, 1987: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. — Phytochem. Bull.19: 11–15.

    Google Scholar 

  • —, 1985: An intergeneric hybrid in theSaxifragaceae: evidence from ribosomal RNA genes. — Amer. J. Bot.72: 1388–1391.

    Google Scholar 

  • Gerbi, S. A., 1985: Evolution of ribosomal RNA. — InMacIntyre, R. J., (Ed.): Molecular evolutionary genetics, pp. 419–518. — New York: Plenum Press.

    Google Scholar 

  • Gouy, M., Li, W.-H., 1989: Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. — Nature339: 145–147.

    PubMed  Google Scholar 

  • Grant, V., 1981: Plant speciation. — New York: Columbia University Press.

    Google Scholar 

  • Hadley, H. H., Hymowitz, T., 1973: Speciation and cytogenetics. — InCaldwell, B. E., (Ed.): Soybeans: improvement, production, and uses, pp. 97–116. — Madison, WI: American Society of Agronomists.

    Google Scholar 

  • Hamby, R. K., Zimmer, E. A., 1988: Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae). — Pl. Syst. Evol.160: 29–37.

    Google Scholar 

  • —, —, 1992: Ribosomal RNA as a phylogenetic tool in plant systematics. — InSoltis, P. S., Soltis, D. E., Doyle, J. J., (Eds.): Molecular systematics of plants, pp. 50–91. — New York: Chapman and Hall.

    Google Scholar 

  • Haufler, C. H., Soltis, D. E., 1986: Genetic evidence suggests that homosporous ferns with high chromosome numbers are diploid. — Proc. Natl. Acad. Sci. U.S.A.83: 4389–4393.

    Google Scholar 

  • Hemleben, V., Ganal, M., Gerstner, J., Schiebel, K., Torres, R. A., 1988: Organization and length heterogeneity of plant ribosomal RNA genes. — InKahl, G., (Ed.): Architecture of eukaryotic genes, pp. 371–383. — Weinham, Fed. Rep. Germ.: VCH.

    Google Scholar 

  • Hightower, R. C., Meagher, R. B., 1985: Divergence and differential expression of soybean actin genes. — EMBO J.4: 1–8.

    PubMed  Google Scholar 

  • Hymowitz, T., 1970: On the domestication of the soybean. — Econ. Bot.24: 408–421.

    Google Scholar 

  • Jorgensen, R. A., Cluster, P. D., 1988: Modes and tempos in the evolution of nuclear ribosomal DNA: new characters for evolutionary studies and new markers for genetic and population studies. — Ann. Missouri Bot. Gard.75: 1238–1247.

    Google Scholar 

  • King, L. M., Schaal, B. A., 1989: Ribosomal-DNA variation and distribution inRudbeckia missouriensis. — Evolution43: 1117–1119.

    Google Scholar 

  • Klekowski, E. J., Jr.,Baker, H. G., 1966: Evolutionary significance of polyploidy in thePteridophyta. — Science135: 305–307.

    Google Scholar 

  • Lake, J. A., 1988: Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. — Nature331: 184–186.

    PubMed  Google Scholar 

  • Learn, G. H., Jr.,Schaal, B. A., 1987: Population subdivision for ribosomal DNA repeat variants inClematis fremontii. — Evolution41: 433–438.

    Google Scholar 

  • Lee, J. S., Verma, D. P. S., 1984: Structure and chromosomal arrangement of leghemoglobin genes in kidney bean suggest divergence in soybean leghemoglobin gene loci following tetraploidization. — EMBO J.3: 2745–2752.

    Google Scholar 

  • Nei, M., 1972: Genetic distance between populations. — Amer. Naturalist106: 283–293.

    Google Scholar 

  • Nickrent, D. L., Franchina, C. R., 1990: Phylogenetic relationships of theSantalales and relatives. — J. Molec. Evol.31: 294–301.

    PubMed  Google Scholar 

  • Palmer, J. D., 1985: Evolution of chloroplast and mitochondrial DNA in plants and algae. — InMacIntyre, R. J., (Ed.): Molecular evolutionary genetics, pp. 131–240. — New York: Plenum Press.

    Google Scholar 

  • —, 1986: Isolation and structural analysis of chloroplast DNA. — Meth. Enzymol.118: 167–186.

    Google Scholar 

  • —, 1987: Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. — Amer. Naturalist130: S6-S29.

    Google Scholar 

  • Pichersky, E., Soltis, D. E., Soltis, P. S., 1990: Defective CAB genes in the genome of a homosporous fern. — Proc. Natl. Acad. Sci. U.S.A.87: 195–199.

    PubMed  Google Scholar 

  • Rogers, S. O., Bendich, A. J., 1987: Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. — Pl. Mol. Biol.9: 509–520.

    Google Scholar 

  • Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., Allard, R. W., 1984: Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. — Proc. Natl. Acad. Sci. U.S.A.81: 8014–8018.

    PubMed  Google Scholar 

  • Schaal, B. A., Learn, G. H., Jr., 1988: Ribosomal DNA variation within and among populations. — Ann. Missouri Bot. Gard.75: 1207–1216.

    Google Scholar 

  • —, 1987: Ribosomal DNA variation in the native plantPhlox divaricata. — Molec. Biol. Evol.4: 611–621.

    Google Scholar 

  • Soltis, D. E., Soltis, P. S., 1987: Polyploidy and breeding systems in homosporousPteridophyta: a reevaluation. — Amer. Naturalist130: 219–232.

    Google Scholar 

  • —, —, 1989: Polyploidy, breeding systems, and genetic differentiation in homosporous pteridophytes. — InSoltis, D. E., Soltis, P. S., (Eds.): Isozymes in plant biology, pp. 241–258. — Portland, OR: Dioscorides Press.

    Google Scholar 

  • Soltis, P. S., Soltis, D. E., 1987: Genetic differentiation between two closely related species ofPolystichum (Dryopteridaceae). — Amer. J. Bot.74 (Suppl.): 136.

    Google Scholar 

  • —, —, 1991a: Multiple origins of the allotetraploidTragopogon mirus (Compositae): rDNA evidence. — Syst. Bot.16: 407–413.

    Google Scholar 

  • —, —, 1991b: Genetic variation in endemic and widespread plant species: examples fromSaxifragaceae andPolystichum (Dryopteridaceae). — Aliso13: 215–223.

    Google Scholar 

  • —, —, —, 1990: Allozymic divergence in North AmericanPolystichum (Dryopteridaceae). — Syst. Bot.15: 205–215.

    Google Scholar 

  • —, —, —, 1991: Allozymic and chloroplast DNA analysis of polyploidy inPolystichum (Dryopteridaceae). I. The origins ofP. californicum andP. scopulinum. — Syst. Bot.16: 245–256.

    Google Scholar 

  • —, 1992: Molecular data and polyploid evolution in plants. — InSoltis, P. S., Soltis, D. E., Doyle, J. J., (Eds.): Molecular systematics of plants, pp. 177–201. — New York: Chapman and Hall.

    Google Scholar 

  • Stein, D. B., Yatskievych, G., Gastony, G. J., 1989: Chloroplast DNA evolution and phylogeny of some Polystichoid ferns. — Biochem. Syst. Ecol.17: 93–101.

    Google Scholar 

  • Sytsma, K. J., Schaal, B. A., 1985: Phylogenetics of theLisianthius skinneri (Gentianaceae) species complex in Panama utilizing DNA restriction fragment analysis. — Evolution39: 594–608.

    Google Scholar 

  • Wagner, D. H., 1979: Systematics ofPolystichum in western North America north of Mexico. — Pteridologia1: 1–64.

    Google Scholar 

  • Wagner, W. H., 1973: Reticulation of holly ferns (Polystichum) in the western United States and adjacent Canada. — Amer. Fern. J.63: 99–115.

    Google Scholar 

  • —, 1985: Morphological variation and evolution inPolystichum. — Amer. Fern. J.75: 22–28.

    Google Scholar 

  • Woese, C. R., 1987: Bacterial evolution. — Microbiol. Rev.51: 221–271.

    PubMed  Google Scholar 

  • Wolfe, K. H., Gouy, M., Yang, Y.-W., Sharp, P. M., Li, W.-H., 1989: Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. — Proc. Natl. Acad. Sci. U.S.A.86: 6201–6205.

    PubMed  Google Scholar 

  • Yakura, K., Kato, A., Tanifuji, S., 1984: Length heterogeneity of the large spacer ofVicia faba is due to the different number of a 325 bp repetitive sequence elements. — Mol. Gen. Genet.193: 400–405.

    Google Scholar 

  • Yatskievych, G., Stein, D. B., Gastony, G. J., 1988: Chloroplast DNA evolution and systematics ofPhanerophlebia (Dryopteridaceae) and related fern genera. — Proc. Natl. Acad. Sci. U.S.A.85: 2589–2593.

    Google Scholar 

  • Zimmer, E. A., Jupe, E. R., Walbot, V., 1988: Ribosomal gene structure, variation and inheritance in maize and its ancestors. — Genetics120: 1125–1136.

    PubMed  Google Scholar 

  • —, 1980: Rapid duplication and loss of genes coding for the α chains of hemoglobin. — Proc. Natl. Acad. Sci. U.S.A.77: 2158–2162.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltis, P.S., Soltis, D.E. Conservation of rDNA inPolystichum (Dryopteridaceae). Pl Syst Evol 181, 11–20 (1992). https://doi.org/10.1007/BF00937583

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00937583

Key words

Navigation