Skip to main content
Log in

Discectomies of the lower cervical spine using interbody biopolymer (B.O.P.) implants

Advantages in the treatment of complicated cervical arthrosis. A review of 150 cases

  • Clinical Articles
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

The authors report their experience with 150 cases of discectomies performed with interbody grafts using a copolymer (Biocompatible Orthopedic Polymer or BOP*). Made of N-Vinylpyrrolidone-Methylmethacrylate monomers, polyamide fibres and calcium gluconate. BOP is a biocompatible, biodegradable, osteoconductive matrix, easy to use and quite safe. These properties are quite well appreciated for cervical interbody grafting. After discectomy, stabilization of the spine is immediate, and fusion slowly occurs around and through the biopolymer within one year. The biomaterial avoids morbidity inherent in the harvesting of an autograft, as well as any limitations resulting from the use of allografts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albee FH (1923) Fundamentals in bone transplantation. Experiences in three thousand bone graft operations. JAMA 81: 1429

    Google Scholar 

  2. Bailey RW, Badgley CE (1960) Stabilization of the cervical spine by anterior fusion. J Bone Jt Surg 42-A: 565–694

    Google Scholar 

  3. Barron DW (1980) Pulmonary embolic syndrome caused by cementing of hip endoprosthesis. Acta Orthop Scand 51: 921–923

    PubMed  Google Scholar 

  4. Bechtel A, Willert HG, Frech HA (1973) Bestimmung des Monomergehaltes von Methacrylsäure-methylester in Knochenmark, Fett und Blut nach Aushärten verschiedener „Knochenzemente“. Chromatographia 6: 226–228

    Google Scholar 

  5. Bunn CW (1953) Fibers from synthetic polymers. R Hill (ed), Elsevier, Amsterdam

    Google Scholar 

  6. Burwell RG, Gowland G, Dexter F (1963) Studies in the transplantation of bone. VI. Further observations concerning the antigenicity of homologous cortical and cancellous bone. J Bone Jt Surg 3, 45-B: 597–608

    Google Scholar 

  7. Cameron HV, Mac Nab I, Pilliar RM (1977) Evaluation of a biodegradable ceramic. J Biomed Mat Res 11: 179

    Google Scholar 

  8. Chollet MC, Skondia V, Degraeve N (1986) Evaluation of the mutagenic potential of a co-polymer of N-Vinylpyrrolidone and methylmetacrylate reinforced with polyamide fibers. XVIth Annual Meeting of the European Environment Mutagen Society, Brussels

  9. Christel P, Chabot F, Leray JL, Morin C, Vert M (1982) Biodegradable composites for internal fixation. Biomaterials 80. Wiley & Sons Ltd, London, p 271

    Google Scholar 

  10. Cloward RB (1963) Lesions of the intervertebral discs and their treatment by interbody fusion method. Clin Orthop 27: 51–75

    PubMed  Google Scholar 

  11. Forster IW, Ralis ZA, Mc Kibbin B, Jenkins DHR (1978) Biological reaction to carbon fiber implants. Clin Orthop 131: 299–307

    PubMed  Google Scholar 

  12. Friedlander G (1982) Current concepts review bone-banking. J Bone Jt Surg 64-A: 307–311

    Google Scholar 

  13. Hollinger JO (1983) Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA). J Biomed Mat Res 17: 71

    Google Scholar 

  14. Holmes RE (1979) Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 63

  15. Hulliger L (1962) Untersuchungen über die Wirkung von Kunstharzen (Palacos und Ostamer) in Gewebekulturen. Arch Orthop Unfall-Chir 54: 581–588

    Google Scholar 

  16. Jackson JW (1971) Surgical approaches to the anterior aspect of the spinal column. Ann R Coll Surg Engl 48: 83–98

    PubMed  Google Scholar 

  17. Kaufman HS (1977) Introduction to polymer science and technology. John Wiley & Sons, New York, p 92

    Google Scholar 

  18. Kronenthal RL (1975) Polymers in medicine and surgery. Biodegradable polymers in medicine. Polym Sci Tech 8: 119

    Google Scholar 

  19. Mankin HJ, Dopplelt S, Tomford W (1983) Clinical experience with allograft implantation. Clin Orthop 174: 69–86

    PubMed  Google Scholar 

  20. Mc Murray GN (1982) The evaluation of Kiel bone in spinal fusions. J Bone Jt Surg 64-B: 101–104

    Google Scholar 

  21. Merendino J, Sertl G, Skondia V (1984) Use of biocompatible orthopaedic polymer for fracture treatment and reconstructive orthopaedic procedures. J Int Med Res 12: 351–355

    PubMed  Google Scholar 

  22. Oppenheimer BS, Oppenheimer ET, Danishefsky I, Stout AP, Eirich FR (1955) Further studies of polymers as carcinogenic agents in animals. Cancer Res 15: 333–340

    PubMed  Google Scholar 

  23. Oppenheimer BS, Oppenheimer ET, Stout AP, Wilhite M, Danishefsky I (1958) The latent period in carcinogenesis by plastics in rats and its relation to the presarcomatous stage. Cancer 11: 204–213

    PubMed  Google Scholar 

  24. Petty W (1978) The effect of methylmetacrylate on chemotaxis of polymorphonuclear leukocytes. J Bone Jt Surg 60-A: 492–498

    Google Scholar 

  25. Petty W (1978) The effect of methylmetacrylate on bacterial phagocytosis and killing by human polymorphonuclear leukocytes. J Bone Jt Surg 60-A: 752–757

    Google Scholar 

  26. Petty W, Spannier S, Shuster JJ (1985) The influence of skeletal implants on incidence of infection. Experiments in a canine model. J Bone Jt Surg 67-A: 1236–1244

    Google Scholar 

  27. Ramani PS, Kalbag RM, Sengupta RP (1975) Cervical spinal interbody fusion with Kiel bone. Br J Surg 62: 147–150

    PubMed  Google Scholar 

  28. Skondia V, Davydov AB, Belykh SI, Heusghem C (1987) Chemical and physico-mechanical aspects of biocompatible orthopaedic polymer (BOP) in bone surgery. J Int Med Res 15, 5: 293–302

    PubMed  Google Scholar 

  29. Smith GW, Robinson RA (1958) The treatment of certain cervical spinal disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Jt Surg (Am) 40-A: 607–624

    Google Scholar 

  30. Taheri ZE (1972) Experience with calf bone in cervical interbody spinal fusion. J Neurosurg 36: 67–71

    PubMed  Google Scholar 

  31. Tomford WW, Dopelt S, Mankin HJ (1983) 1983 Bone Bank Procedus. Clin Orthop Rel Res 174: 15–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

DTA s.a., 217, rue Royale, B-1030, Bruxelles, Belgique; 175 South Main Street, Suite 560, Salt Lake City, UT84111, U.S.A.; ICP France, B.P.91, F-52003 Chaumont Cédex, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lozes, G., Fawaz, A., Cama, A. et al. Discectomies of the lower cervical spine using interbody biopolymer (B.O.P.) implants. Acta neurochir 96, 88–93 (1989). https://doi.org/10.1007/BF01456164

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01456164

Keywords

Navigation