Skip to main content
Log in

Characterization of [3H]clozapine binding sites in rat brain

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

We examined the characteristics of [3H]clozapine binding sites in four rat brain regions (frontal cortex, limbic area, hippocampus and striatum) in order to elucidate the pharmacological profile of this unique atypical antipsychotic drug. The specific [3H]clozapine binding was found to be saturable and reversible in all these brain regions. Scatchard analysis of the saturation data indicated that the specific binding consisted of high- and low-affinity components. Displacement experiments showed that the muscarinic cholinergic receptor represented about 50% of [3H]clozapine binding in each brain area. Serotonin 5-HT2 and dopamine D4 receptor binding sites could also be detected by displacement experiments using ketanserin and nemonapride, respectively, in frontal cortex and limbic area, but not in hippocampus or striatum. Alpha-1, alpha-2, histamine H1, dopamine D1, D2, or D3 receptor components could not be determined within the high-affinity [3H]clozapine binding sites in any brain region. It is possible that the atypical property of clozapine may depend on the modulatory effect on dopaminergic function via 5-HT2 receptor blockade and/or may be mediated via D4 receptor blockade in the mesocortical and mesolimbic area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angst J, Bente D, Berner P, Heimann H, Helmchen H, Hippius H (1971) Das klinische Wirkungsbild von Clozapin (Untersuchung mit dem AMP-System). Pharmakopsychiatry 4: 201–211

    Google Scholar 

  • Carter CJ, Pycock CJ (1977) Possible importance of 5-hydroxytryptamine in neuroleptic-induced catalepy in rats. Br J Pharmacol 60: 267–268

    Google Scholar 

  • Casey DE (1989) Clozapine: neuroleptic-induced EPS and tartive dyskinesia. Psychopharmacology 99: S47-S53

    PubMed  Google Scholar 

  • Chiodo LA, Bunney SB (1983) Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci 3: 1607–1619

    PubMed  Google Scholar 

  • Chipkin RE, Latranyi MB (1987) Similarity of clozapine and SCH23390 in reserpinized rats suggests a common mechanism of action. Eur J Pharmacol 136: 371–375

    PubMed  Google Scholar 

  • Coward DM, Imperato A, Urwyler S, White TG (1989) Biochemical and behavioural properties of clozapine. Psychopharmacology 99 [Suppl]: S6-S12

    PubMed  Google Scholar 

  • Farde L, Wiesel FA, Nordström A-L, Sedvall G (1989) D1 and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology 99 [Suppl]: S28-S31

    PubMed  Google Scholar 

  • Farde L, Nordström A-L, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Arch Gen Psychiatry 49: 538–544

    PubMed  Google Scholar 

  • Flamez A, De Backer J-P, Wilczak N, Vauquelin G, De Keyser J (1994) [3H]Clozapine is not a suitable radioligand for the labelling of D4 dopamine receptors in postmortem human brain. Neurosci Lett 175: 17–20

    PubMed  Google Scholar 

  • Hand TH, Hu X-T, Wang RY (1987) Differential effects of acute clozapine and haloperidol on the activity of ventral tegmental (A10) and nigrostriatal (A9) dopamine neurons. Brain Res 415: 257–269

    PubMed  Google Scholar 

  • Hauser D, Closse A (1978)3H-Clozapine binding to rat brain membranes. Life Sci 23: 557–562

    PubMed  Google Scholar 

  • Hess EJ, Battaglia G, Norman AB, Iorio LC, Creese I (1986) Guanine nucleotide regulation of agonist interactions at [3H]SCH23390-labeled D1 dopamine receptors in rat striatum. Eur J Pharmacol 121: 31–38

    PubMed  Google Scholar 

  • Imperato A, Angelucci L (1989) The effects of clozapine and fluperlapine on the in vivo release and metabolism of dopamine in the striatum and in the prefrontal cortex of freely moving rats. Psychopharmacol Bull 25: 383–389

    PubMed  Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meltzer HY, the Clozaril Collaborative Study Group (1988) Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine. Arch Gen Psychiatry 45: 789–796

    PubMed  Google Scholar 

  • Klawans HL, Goetz CG, Perlik S (1980) Tardive dyskinesia: review and uptake. Am J Psychiatry 137: 900–908

    PubMed  Google Scholar 

  • Kostowski W, Gumulka W, Czlonkowski A (1972) Reduced cataleptogenic effects of some neuroleptics in rats with lesioned midbrain raphe and treated with p-chlorophenylalanine. Brain Res 48: 443–446

    PubMed  Google Scholar 

  • Lahti RA, Evans DL, Stratman NC, Figur LM (1993) Dopamine D4 versus D2 receptor selectivity of dopamine receptor antagonists: possible therapeutic implications. Eur J Pharmacol 236: 483–486

    PubMed  Google Scholar 

  • Leysen JE, Niemegeers CJE, Van Nueten JM, Laduron PM (1982) [3H]Ketanserin (R 41 468), a selective3H-ligand for serotonin2 receptor binding sites: binding properties, brain distribution, and functional role. Mol Pharmaco 21: 301–314

    PubMed  Google Scholar 

  • Leysen JE, Janssen PMF, Schotte A, Luyten WHML, Megens AAHP (1993) Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects: role of 5-HT2 receptors. Psychopharmacology 112: S40-S54

    PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    PubMed  Google Scholar 

  • Matsubara S, Matsubara R, Kusumi I, Koyama T, Yamashita I (1993) Dopamine D1, D2 and serotonin2 receptor occupation by typical and atypical antipsychotic drugs in vivo. J Pharmacol Exp Ther 265: 498–508

    PubMed  Google Scholar 

  • McPherson GA (1985) KINETIC, EBDA, LIGAND, LOWRY: a collection of radioligand binding analysis programmes (Biosoft, Cambridge)

  • McQuade RD, Ford D, Duffy RA, Chipkin RE, Iorio LC, Barnett A (1988) Serotonergic component of SCH23390: in vitro and in vivo binding analyses. Life Sci 43: 1861–1869

    PubMed  Google Scholar 

  • Meltzer HY, Fang VS (1976) The effects of neuroleptics on serum prolactin in schizophrenic patients. Arch Gen Psychiatry 33: 279–286

    PubMed  Google Scholar 

  • Meltzer HY, Goode DJ, Schyve PM, Young M, Fang VS (1979) Effect of clozapine on human serum prolactin levels. Am J Psychiatry 136: 1551–1555

    Google Scholar 

  • Meltzer HY, Bastani B, Ramirez L, Matsubara S (1989a) Clozapine: new research on efficacy, mechanism of action. Eur Arch Psychiat Neurol Sci 238: 332–339

    Google Scholar 

  • Meltzer HY, Matsubara S, Lee J-C (1989b) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251: 238–246

    PubMed  Google Scholar 

  • Miller RJ, Hiley CR (1974) Anti-muscarinic properties of neuroleptics and drug-induced Parkinsonism. Nature 248: 596–597

    PubMed  Google Scholar 

  • Saller CF, Czupryna MJ, Salama AI (1990) 5-HT2 receptor blockade by ICI 169, 369 and other 5-HT2 antagonists modulates the effects of D-2 dopamine receptor blockade. J Pharmacol Exp Ther 253: 1162–1170

    PubMed  Google Scholar 

  • Seeman P (1992) Dopamine receptor sequences: therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 7: 261–284

    PubMed  Google Scholar 

  • Seeman P, Guan H-C, Van Tol HHM (1993) Dopamine D4 receptors elevated in schizophrenia. Nature 365: 441–445

    PubMed  Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan H-C, Sunahara RK, Seeman P, Niznik HB, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350: 610–614

    PubMed  Google Scholar 

  • Watson M, Roeske WR, Yamamura HI (1986) [3H]pirenzepine and (−)- [3H]quinuclidinyl benzilate binding to rat cerebral cortical and cardiac muscarinic sites: characterization, regulation of antagonist binding to putative muscarinic subtypes. J Pharmacol Exp Ther 237: 419–427

    PubMed  Google Scholar 

  • White FJ, Wang RY (1983) Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 221: 1054–1057

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusumi, I., Matsubara, S., Takahashi, Y. et al. Characterization of [3H]clozapine binding sites in rat brain. J. Neural Transmission 101, 51–64 (1995). https://doi.org/10.1007/BF01271545

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01271545

Keywords

Navigation