Skip to main content
Log in

An isentropic vertical coordinate model: Design and application to atmospheric frontogenesis studies

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

The isentropic vertical coordinate model developed at UCLA is briefly reviewed. The review includes an outline of the approach used to overcome technical difficulties in handling model layers with small mass.

The model's performance is demonstrated by simulating the evolution of a middle-latitude baroclinic disturbance. During the evolution of the disturbance, sharp frontal zones are generated in the upper and middle troposphere with realistic tropopause folding. The extent to which different dynamical processes contribute to frontogenesis is analyzed.

While the model successfully simulates frontogenesis in the upper and middle troposphere, it has a difficulty in simulating surface fronts. The difficulty arises due to the lack of degrees of freedom in surface temperatures since an isentropic vertical coordinate model requires a large number ofvertical layers to obtain a highhorizontal resolution at the lower boundary. This suggests the potential of a hybrid vertical coordinate, which approaches θ at upper levels and σ at lower levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, A., Lamb, V. R., 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. General Circulation Models of the Atmosphere (Methods in Computational Physics,17), edited by J. Chang, Academic Press, 173–265.

  • Arakawa, A., Lamb, V. R., 1981: A potential enstrophy and energy conserving scheme for the shallow water equations.Mon. Wea. Rev.,109, 18–36.

    Google Scholar 

  • Arakawa, A., Moorthi, S., 1988: Baroclinic instability in vertically discrete systems.J. Atmos. Sci.,45, 1688–1707.

    Google Scholar 

  • Arakawa, A., Hsu, Y.-J. G., 1990: Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations.Mon. Wea. Rev.,118, 1960–1969.

    Google Scholar 

  • Bleck, R., 1978: On the use of hybrid vertical coordinates in numerical weather prediction models.Mon. Wea. Rev.,106, 1233–1244.

    Google Scholar 

  • Bosart, L., 1970: Mid-tropospheric frontogenesis,Quart. J. Roy. Meteor. Soc.,96, 442–471.

    Google Scholar 

  • Buzzi, A., Nanni, T., Tagliazucca, M., 1977: Mid-tropospheric frontal zones: Numerical experiments with an isentropic coordinate primitive equation model.Arch. Meteor. Geophys. Biokl.,A26, 155–178.

    Google Scholar 

  • Charney, J. G., Phillips, N. A., 1953: Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows.J. Meteor.,10, 71–79.

    Google Scholar 

  • Danielsen, E. F., 1968: Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity.J. Atmos. Sci.,25, 502–518.

    Google Scholar 

  • Danielsen, E. F., Hipskind, R. S., Gaines, S. E., Sachse, G. W., Gregory, C. L., Hill, G. F., 1987: Three-dimensional analysis of potential vorticity associated with tropopause folds and observed variations of ozone and carbon monoxide.J. Geophys. Res.,92, 2103–2111.

    Google Scholar 

  • Hines, K. M., Mechoso, C. R., 1991: Frontogenesis processes in the middle and upper troposphere.Mon. Wea. Rev.,119, 1225–1241.

    Google Scholar 

  • Hollingsworth, A., Kalberg, P., Renner, V., Burridge, D. M., 1983: An internal symmetric computational instability.Quart. J. Roy. Meteor. Soc.,109, 417–428.

    Google Scholar 

  • Hoskins, B. J., McIntyre, M. E., Robertson, A. W., 1985: On the use and significance of isentropic potential vorticity maps.Quart. J. Roy. Meteor. Soc.,111, 877–946.

    Google Scholar 

  • Hsu, Y.-J. G., Arakawa, A., 1990: Numerical modeling of the atmosphere with an isentropic vertical coordinate.Mon. Wea. Rev.,118, 1933–1959.

    Google Scholar 

  • Lorenz, E. N., 1960: Energy and numerical weather prediction.Tellus,12, 364–373.

    Google Scholar 

  • Miller, J. E., 1948: On the concept of frontogenesis.J. Meteor.,5, 169–171.

    Google Scholar 

  • Mudrick, S. E., 1974: A numerical study of frontogenesis.J. Atmos. Sci.,31, 869–892.

    Google Scholar 

  • Phillips, N. A., 1957: A coordinate system having some special advantages for numerical forcasting.J. Meteor.,14, 184–185.

    Google Scholar 

  • Sadourny, R., 1984: Entropy coordinate, quasi-geostrophic turbulence and the design of lateral diffusion in general circulation models.Numerical Methods for Weather Prediction,1, ECMWF Seminar 1983, 255–290.

    Google Scholar 

  • Sadourny, R., Basdevant, C., 1985: Parameterization of subbrid scale barotropic and baroclinic eddies in quasigeostrophic models: Anticipated potential vorticity method.J. Atmos. Sci.,42, 1353–1363.

    Google Scholar 

  • Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere.J. Atmos. Sci.,37, 994–1004.

    Google Scholar 

  • Takacs, L. L., 1985: A two-step scheme for the advection equation with minimized dissipation and dispersion errors.Mon. Wea. Rev.,113, 1050–1065.

    Google Scholar 

  • Uccellini, L. W., Johnson, D. R., Schlesinger, R. E., 1979: An isentropic and sigma coordinate hybrid numerical model: Model development and some initial tests.J. Atmos. Sci.,36, 390–414.

    Google Scholar 

  • Zhu, Z.-X., Thuburn, J., Hoskins, B. J., Haynes, P. H., 1992: A vertical finite-difference scheme based on a hybrid σ-0-p coordinate.Mon. Wea. Rev.,120, 851–862.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 12 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arakawa, A., Mechoso, C.R. & Konor, C.S. An isentropic vertical coordinate model: Design and application to atmospheric frontogenesis studies. Meteorl. Atmos. Phys. 50, 31–45 (1992). https://doi.org/10.1007/BF01025503

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025503

Keywords

Navigation