Skip to main content
Log in

Oxidation of substituted phenethyl alcohols by sodium-N-chloro-p-toluene sulfonamide: A kinetic study

Die Oxidation substituierter Phenethylalkohole mit Natrium-N-chlor-p-toluolsulfonamid: Kinetische Untersuchungen

  • Anorganische Und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary

The kinetics of the oxidation of sixp-substituted phenethyl alcohols (PEA, R=−H, −Cl, −Br, −CH3, −OCH3, and -NO2) by sodium-N-chloro-p-toluene sulfonamide (chloramine-T,CAT) in the presence of HCl was studied at 35°C. The rate shows a first order dependence on [CAT]0 and [H+]0 and a fractional order in [PEA]0 and [Cl]0. Ionic strength variations, addition of reaction product toluene sulfonamide, and variation of the dielectric constant of the medium have no effect on the rate. The solvent isotope effect\(k_{H_2 0}^\prime /k_{D_2 0}^\prime \) amounts to about 0.90. Proton inventory studies have been made in H2O-D2O mixtures. The rates correlate satisfactorily withHammett's relationship. The reaction constant ρ was −3.3 for electron releasing substituents and −0.25 for electron withdrawing groups at 35°C. The activation parameters ΔH #, ΔS #, ΔG #, and logA were derived. ΔH # and ΔS # are linearly related, and an isokinetic relationship is observed with β=166.7K, indicating entropy as a controlling factor.

Zusammenfassung

Die Kinetik der Oxidation von sechsp-substituierten Phenethylalkoholen (PEA), R=−H, −Cl, −Br, −OCH3 und NO2) mit Natrium-N-chlor-p-toluolsulfonamid (Chloramin-T,CAT) in Gegenwart von HCl bei 35°C wurde untersucht. Die Reaktionsgeschwindigkeit ist in bezug auf [CAT]0 und [H+]0 ester und hinsichtlich [PEA]0 und [Cl]0 gebrochener Ordnung. Variation der Ionenstärke, Zusatz von Reaktionsprodukt oder Toluolsulfonamid und Variation der Dielektrizitätskonstante des Mediums haben keinen Einfluß auf die Reaktionsgeschwindigkeit Der Lösungsmittel-Isotopeneffekt\(k_{H_2 0}^\prime /k_{D_2 0}^\prime \) beläuft sich auf etwa 0.90. Die Protonenbilanz wurde in H2O-D2O Mischungen untersucht. Die Geschwindigkeiten korrelieren zufriedenstellend nach derHammettschen Beziehung. Die Reaktionskonstante wurde mit ρ=−3.3 für elektronenabgebende und ρ=−0.25 für elektronenanziehende Substituenten bei 35°C bestimmt. Die Aktivierungsparameter ΔH #, ΔG #, ΔG # und logA wurden abgeleitet; ΔH # und ΔS # korrelieren linear, und eine isokinetische Beziehung mit β=166.7K weist auf die Entropie als kontrollierenden Faktor hin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell MM, Johnson G (1978) Chem Rev78: 65

    Google Scholar 

  2. Mahadevappa DS, Rangappa KS, Gowda NMM, Gowda BT (1981) J Phys Chem25: 3651

    Google Scholar 

  3. Mahadevappa DS, Ananda S, Murthy ASA, Rangappa KS (1984) Tetrahedron10: 1673

    Google Scholar 

  4. Mahadevappa DS, Mohan K (1985) Oxid Comm207: 86

    Google Scholar 

  5. Mythily CK, Mahadevappa DS, Rangappa KS (1991) Collect Czech Chem Commun56: 1671

    Google Scholar 

  6. For a review see: Haines AH (1988) Methods for the Oxidation of Organic Compounds. Academic Press, New York

    Google Scholar 

  7. Palomo C, Ontolia JM, Odriozola JM, Aizpurua JM, Ganboa I (1990) J Chem Soc Chem Commun 248

  8. Wiberg KB (1965) Oxidation in Organic Chemistry, part A. Academic Press, New York, pp 142, 159;

    Google Scholar 

  9. Wiberg KB (1965) Oxidation in Organic Chemistry, part A. Academic Press, New York, pp 198;

    Google Scholar 

  10. Wiberg KB (1965) Oxidation in Organic Chemistry, part A. Academic Press, New York, pp 200;

    Google Scholar 

  11. Wiberg KB (1965) Oxidation in Organic Chemistry, part A. Academic Press, New York, pp 47;

    Google Scholar 

  12. Wiberg KB (1965) Oxidation in Organic Chemistry, part A. Academic Press, New York, pp 247

    Google Scholar 

  13. Trahanovsky WS (1973) Oxidation in Organic Chemistry, part B. Academic Press, New York, pp 35;

    Google Scholar 

  14. Trahanovsky WS (1973) Oxidation in Organic Chemistry, part B. Academic Press, New York, pp 197

    Google Scholar 

  15. Andette RJ, Quail JW, Smith PJ (1972) Chem Commun 38

  16. Richards RME et al. (1969 and 1972) J Pharmacol21: 68 and24: 145

    Google Scholar 

  17. Morris JC, Salazar JA, Wineman MA (1948) J Am Chem Soc70: 12036

    Google Scholar 

  18. Mahadevappa DS, Ananda S, Gowda NMM, Rangappa KS (1985) J Chem Soc Perkin Trans 39

  19. Ehrenson S, Brownlee RTC, Taff RW (1973) Prog Phys Org Chem10: 13

    Google Scholar 

  20. Gilliom RD (1970) Introduction to Physical Organic Chemistry. Addison-Wesley, London, p 264

    Google Scholar 

  21. Albery WJ, Davies MH (1972) J Chem Soc Faraday Trans68: 167

    Google Scholar 

  22. Gopal Krishnan G, Hogg JL (1985) J Org Chem50: 1206

    Google Scholar 

  23. Isaccs NS (1987) Physical Chemistry, Wiley, New York, p 275

    Google Scholar 

  24. Moelwyn-Hughes EA (1947) The Kinetics of Reaction in Solutions. Clarenden Press, Oxford

    Google Scholar 

  25. Laidler KJ, Eyring H (1940) Ann NY (Acad Sci39: 303;

    Google Scholar 

  26. Laidler KJ, Landskroener PA (1957) Trans Farady Soc52: 200;

    Google Scholar 

  27. Laidler KJ (1965) Chemical Kinetics. Tata-Mc Graw-Hill, Bombay

    Google Scholar 

  28. Benson SW (1960) The Foundation of Chemical Kinetics, Mc Graw-Hill, New York

    Google Scholar 

  29. Frost AA, Pearson RG (1961) Kinetics and Mechanism, 2nd ed. Wiley, New York

    Google Scholar 

  30. Amis ES (1966) Solvent Effects on Reaction Rates and Mechanisms. Academic Press, New York

    Google Scholar 

  31. Entelis SG, Tiger RP (1976) Reaction Kinetics in the Liquid Phase. Wiley, New York

    Google Scholar 

  32. Brown HC, Okamoto Y (1958) J Am Chem Soc80: 4979

    Google Scholar 

  33. Exner O (1964) Collect Czech Chem Commun29: 1094

    Google Scholar 

  34. Merck Index II, 7236

  35. Beil11, 104

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandra, H., Rangappa, K.S., Mahadevappa, D.S. et al. Oxidation of substituted phenethyl alcohols by sodium-N-chloro-p-toluene sulfonamide: A kinetic study. Monatsh Chem 127, 241–255 (1996). https://doi.org/10.1007/BF00813789

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00813789

Keywords

Navigation