Skip to main content
Log in

A general theory of finite deformation of viscoplastic thin shells

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this paper we develop a general theory of thin inelastic shells for finite deformations. In a first step we present a general three-dimensional theory of inelastic material behavior. Any inelastic constitutive model with internal state variables can be used which is formulated without the explicit notion of a yield surface. In a next step we investigate the simplifications of our constitutive theory resulting from the assumption of small elastic strains which is well established for metallic materials. Furthermore, we introduce the assumption of persistent isotropy. Finally, we present the weak form of the balance of equilibrium and indicate its linearization.

To formulate our shell theory we first present the geometrical description of thin shells in the reference and current configuration, respectively. Next we introduce strain measures for the shell where we include transverse shear strains and also thickness changes of the shell. The shell theory is formulated by application of the projection method, i.e. we integrate all relevant equations of the three-dimensional theory over the shell thickness. This projection leads to a strictly two-dimensional shell theory which is formulated entirely on the shell midsurface. Finally, we indicate the numerical implementation of our shell theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Love, A. E. H.: On the small vibrations and deformations on thin elastic shells. Phil. Trans. R. Soc. London Ser. A179, 259–300 (1888).

    Google Scholar 

  2. Reissner, E.: The effect of transverse shear deformations on the bending of elastic plates. J. Appl. Mech.12, A69-A77 (1945).

    Google Scholar 

  3. Basar, Y., Krätzig, W. B.: Mechanik der Flächentragwerke. Braunschweig, Wiesbaden: Vieweg & Sohn 1985.

    Google Scholar 

  4. Koiter, W. T.: On the nonlinear theory of thin elastic shells. Proc. Kon. Ned. Akad. Wet., 1–54, 1966.

  5. Pietraskiewicz, W.: Introduction to the non-linear theory of shells. Technical Report, Ruhr-Universität Bochum, 1977.

  6. Libai, A., Simmonds, J. G.: The nonlinear theory of shells. New York: Academic Press 1988.

    Google Scholar 

  7. Schieck, B., Pietraskiewicz, W., Stumpf, H.: Theory and numerical analysis of shells undergoing large elastic strains. Int. J. Solids Struct.29, 689–709 (1992).

    Google Scholar 

  8. Simo, J. C., Fox, D. D.: On a stress resultant geometrically exact shell model. Part 1: Formulation and optimal parametrization. Comp. Meth. Appl. Mech. Eng.72, 267–304 (1989).

    Google Scholar 

  9. Simo, J. C., Fox, D. D., Rifai, S. M.: On a stress resultant geometrically exact shell model. Part 2: The linear theory; computational aspects. Comp. Meth. Appl. Mech. Eng.73, 53–92 (1989).

    Google Scholar 

  10. Simo, J. C., Fox, D. D., Rifai, S. M.: On a stress resultant geometrically exact shell model. Part 3: Computational aspects of the nonlinear theory. Comp. Meth. Appl. Mech. Eng.79, 21–78 (1990).

    Google Scholar 

  11. Simo, J. C., Rifai, S. M., Fox, D. D.: On a stress resultant geometrically exact shell model. Part 4: Variable thickness shell with through-the-thickness stretching. Comp. Meth. Appl. Eng.81, 91–126 (1990).

    Google Scholar 

  12. Anand, L.: Constitutive equations for hot-working of metals. Int. J. Plasticity1, 213–232 (1985).

    Google Scholar 

  13. Bodner, S. R., Partom, Y.: Constitutive equations for elastic-viscoplastic strain-hardening materials. ASME J. Appl. Mech.42, 385–389 (1975).

    Google Scholar 

  14. Chaboche, L. E.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plasticity5, 247–302 (1989).

    Google Scholar 

  15. Hart, E. W.: Constitutive relations for the non-elastic deformation of metals. Trans. ASME J. Eng. Mat. Technol.98, 97–105 (1976).

    Google Scholar 

  16. Steck, E.: A stochastic model for the high-temperature plasticity of metals. Int. J. Plasticity1, 243–258 (1985).

    Google Scholar 

  17. Mukherjee, S., Kollmann, F. G.: A new rate principle for suitable analysis of inelastic deformation of plates and shells. J. Appl. Mech.52, 533–535 (1985).

    Google Scholar 

  18. Oden, J. T., Reddy, J. N.: On dual complementary variational principles in mathematical physics. Int. J. Eng. Sci.12, 1–29 (1974).

    Google Scholar 

  19. Kollmann, F. G., Mukherjee, S.: A general, geometrically linear theory of inelastic thin shells. Acta Mech.57, 41–67 (1985).

    Google Scholar 

  20. Kollmann, F. G., Bergmann, V.: Numerical analysis of viscoplastic axisymmetric shells based on a hybrid strain finite element. Comp. Mech.7, 89–105 (1990).

    Google Scholar 

  21. Kollmann, F. G., Cordts, D., Hackenberg, H.-P.: Implementation and numerical tests of a family of mixed finite elements for the computation of axisymmetric viscoplastic shells. Unpublished report MuM-Report 90/1, Technische Hochschule Darmstadt, Darmstadt, Germany, 1990.

    Google Scholar 

  22. Parisch, H.: Large displacements of shells including material nonlinearities. Comp. Meth. Appl. Mech. Eng.27, 183–204 (1981).

    Google Scholar 

  23. Hughes, T. J. R., Liu, W. K.: Nonlinear finite element analysis of shells. Part 1: three-dimensional shells. Comp. Meth. Appl. Mech. Eng.26, 333–362 (1981).

    Google Scholar 

  24. Hughes, T. J. R., Liu, W. K.: Nonlinear finite element analysis of shells. Part 2: two-dimensional shells. Comp. Meth. Appl. Mech. Eng.27, 167–181 (1981).

    Google Scholar 

  25. Dinis, L. M. S., Owen, D. R. J.: Elasto-viscoplastic and elasto-plastic large deformation analysis of thin plates and shells. Int. J. Num. Meth. Eng.18, 591–607 (1982).

    Google Scholar 

  26. Naghdi, P. M.: Theory of plates and shells. In: Handbuch der Physik, pp. 473–479, Vol. VIa/2 (Flügge, S., Truesdell, C., eds.). Berlin, Heidelberg, New York: Springer 1972.

    Google Scholar 

  27. Wriggers, P.: Konsistente Linearisierung in der Kontinuumsmechanik und ihre Anwendung auf die Finite-Element-Methode. Habilitationsschrift, Technische Universität Hannover, 1988.

  28. Gurtin, M. E.: An introduction to continuum mechanics. New York, London, Toronto, Sydney, San Francisco: Academic Press 1981.

    Google Scholar 

  29. Kollman, F. G., Hackenberg, H.-P.: On the algebra of two-point tensors on manifolds with applications in nonlinear solid mechanics. ZAMM73, 307–314 (1993).

    Google Scholar 

  30. Marsden, E., Hughes, T. J. R.: Mathematical foundations of elasticity. Englewood Cliffs: Prentice Hall 1983.

    Google Scholar 

  31. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal.4, 273–334 (1960).

    Google Scholar 

  32. Besseling, J. F.: A thermodynamic approach to rheology. In: Irreversible aspects of continuum mechanics, pp. 16–53, (Parkus, H., Sedov, L. I. eds.). Wien, Springer 1968.

    Google Scholar 

  33. Lee, E. H.: Elastic-plastic deformation at finite strains. J. Appl. Mech.36, 1–6 (1969).

    Google Scholar 

  34. Cleja-Tigoiu, S., Soos, E.: Elastoplastic models with relaxed configurations and internal state variables. Appl. Mech. Rev.43, 131–151 (1990).

    Google Scholar 

  35. Dafalias, Y. F.: The plastic spin. J. Appl. Mech.52, 865–871 (1985).

    Google Scholar 

  36. Hackenberg, H.-P., Kollmann, F. G.: A general theory of finite inelastic deformation of metals based on the concept of unified constitutive models. Acta Mech.110, 217–239 (1995).

    Google Scholar 

  37. Ortiz, M., Simo, J. C.: An analysis of a new class of integration algorithms for elastoplastic constitutive relations. Int. J. Num. Meth. Eng.23, 353–366 (1986).

    Google Scholar 

  38. An, Q.: Eine Theorie inelastischer Schalen bei finiten Deformationen. PhD thesis, Technische Hochschule Darmstadt, Darmstadt, Germany, 1993.

    Google Scholar 

  39. Naghdi, P. M., Vongsarnpigoon, L.: A theory of shells with small strains accompanied by moderate rotation. Arch. Ration. Mech. Anal.83, 245–283 (1983).

    Google Scholar 

  40. Hackenberg, H.-P., Kollmann, F. G.: A methodology for formulating large strain viscoplastic constitutive equations with application to simple shear. In: Finite inelastic deformations — theory and application, Proc. IUTAM Symposium Hannover 1991, pp. 81–91. Berlin, Heidelberg, New York, Tokyo: Springer 1992.

    Google Scholar 

  41. Onat, E. T.: Representation of inelastic behavior in the presence of anisotropy and finite deformations. In: Plasticity of metals: Theory, computations and experiment (Lee, E. H., Mallet, R. L., eds.), pp. 519–544. Stanford University and Rensselaer Polytechnical Institute 1982.

  42. Kratochvil, J.: On a finite strain theory of elastic-plastic materials. Acta Mech.16, 127–142 (1973).

    Google Scholar 

  43. Kollmann, F. G., Hackenberg, H.-P.: Kinematics and rate-type elastic constitutive equations for finite rate dependent inelastic deformation with small elastic strains. Unpublished report MuM-Bericht 90/2, Technische Hochschule Darmstadt, Fg Maschinenelemente, Darmstadt, 1990.

    Google Scholar 

  44. Onat, E. T.: Representation of inelastc behavior in presence of anisotropy and finite deformation. In: Plasticity of metals: Theory, computations and experiment, (Lee, E. H., Mallet, R. L., eds.), Stanford University and Rensselaer Polytechnical Institute, 1982.

  45. Hackenberg, H.-P.: Über die Anwendung inelastischer Stoffgesetze auf finite Deformationen mit der Methode der Finiten Elemente. PhD thesis, Technische Hochschule Darmstadt, 1992.

  46. Naghdi, P. M.: Foundations of elastic shell theory. In: Progress in solid mechanics, (Sneddon, I. S., Hill, R., eds.), pp. 3–90. Amsterdam: North-Holland 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, Q., Kollmann, F.G. A general theory of finite deformation of viscoplastic thin shells. Acta Mechanica 117, 47–70 (1996). https://doi.org/10.1007/BF01181036

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01181036

Keywords

Navigation