Skip to main content
Log in

Morphogenesis of coremia and rhizomorphs in the AscomyceteSphaerostilbe repens

II. Ultrastructural aspects of developing primordia

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The differentiating stages of coremia and rhizomorphs inSphaerostilbe repens were studied by transmission electron microscopy.

Vegetative mycelium is characterized by highly cytoplasmic cells rich in ribosomes and mitochondria and with few vacuoles as well as endoplasmic reticulum. Cell walls are thin attaining a maximum thickness of 0.10 μm. During the aggregating phase a prosenchymatous mass of randomly oriented cells is produced by localized elongation and branching of the filaments. The hyphae in this region have the appearance of actively metabolising cells. In the course of the differentiating phase, numerous hyphae of the median zone of the aggregate grow upward and downward to give rise to coremium and rhizomorph primordia respectively. The individual hyphal tips lay parallel to each other and cells of the growing apices retain their meristematic characteristics. At the periphery of the aggregate and to a lesser extent in the subapical rhizomorphic zone, cells reduce their cytoplasmic density as a consequence of a decrease in the number of ribosomes. These cells also increase in size and become isodiametric and vacuolated. During cellular differentiation walls increase steadily in thickness and at the elongating phase they reach 0.30 μm in the rhizomorphic cortex. Mucilaginous material is progressively deposited around hyphae and in the most differentiated zones, coalesce to fill interhyphal spaces. This extracellular matrix seems to play a role in maintaining cohesiveness of the aggregated organs.

The tissue in the process of differentiation is scattered with cells highly enriched in mitochondria and with cells virtually undifferentiated. Accumulation of microfilaments takes place in the differentiating zone localized behind the immersed meristematic apex. These structures might be involved in wall synthesis. Glycogen rosettes accumulate in the vegetative mycelium surrounding the aggregating centers, suggesting the possibility of supplying energy during the differentiating processes. The vacuolar system, represented by autophagic vacuoles which are present until the differentiation phase, presumably may also participate in the biochemical changes that occur during aggregation.

Coremial cells are characterized by an increase in wall thickness, a highly sinuous plasma-membrane as well as large amounts of mucilaginous compounds accumulated between hyphae, but in all other respects they resemble the cells of actively growing vegetative hyphae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, E. D., Lowry, R. J., Sussman, A. S., 1974: Accumulation of microfilaments in a colonial mutant ofNeurospora crassa. J. Ultrastruct. Res.48, 455–464.

    Google Scholar 

  • Boisson, C., Goujon, M., 1974: Induction hormonale et régulation de la formation des sclérotes duCorticium rolfsii (Sacc.) Curzi et des rhizomorphes duLeptoporus lignosus (Kl.) Heim. Rev. Cytol. et Biol. vég.37, 257–264.

    Google Scholar 

  • Botton, B., 1980: Morphogenèse des organes agrégés chez l'AscomycèteSphaerostilbe repens Berk. et Br. Doctorat d'Etat thesis, 374 p. University of Nancy I.

  • —, 1983: Morphogenesis of coremia and rhizomorphs in the AscomyceteSphaerostilbe repens. I. Light microscopic investigations. Protoplasma116, 91–98.

    Google Scholar 

  • —,Bonaly, R., 1982: Cell wall composition in the AscomyceteSphaerostilbe repens at different developmental stages. Arch. Microbiol.131, 291–297.

    Google Scholar 

  • —,Dexheimer, J., 1977: Ultrastructure des rhizomorphes duSphaerostilbe repens B. et Br. Z. Pflanzenphysiol.85, 429–443.

    Google Scholar 

  • —,Ly, P. R., Kilbertus, G., 1979: Morphologie et ultrastructure de la corémie chez leSphaerostilbe repens. Cytologia44, 639–649.

    Google Scholar 

  • Bracker, C. E., 1967: Ultrastructure of fungi. Ann. Rev. Phytopathol.5, 343–374.

    Google Scholar 

  • Breton, A., 1971: Croissance et développement des corémies du genreDoratomyces corda. Soc. Bot. Fr., Mémoires, 19–27.

    Google Scholar 

  • Butler, G. M., 1958: The development and behaviour of mycelial strands inMerulius lacrymans (Wulf.) Fr. II. Hyphal behaviour during strand formation. Ann. Bot.22, 219–236.

    Google Scholar 

  • Chahsavan-Behboudi, B., 1974: Contribution à l'étude morphologique, morphogénétique et cytologique de l'Armillaria mellea (Vahl ex Fr.) Quélet. à anneau membraneux blanc. Docteur Ingénieur thesis, 88 p. University of Paris VI.

  • Corner, E. J. H., 1950: A monograph ofClavaria and allied genera. London: Oxford University Press.

    Google Scholar 

  • Harris, J. L., 1970: Surface features of the fruiting structures ofCeratocystis ulmi. Mycologia62, 1130–1137.

    Google Scholar 

  • —,Taber, W. A., 1970: Influence of certain nutrients and light on growth and morphogenesis of the synnema ofCeratocystis ulmi. Mycologia62, 152–170.

    Google Scholar 

  • — —, 1973: Ultrastructure and morphogenesis of the synnema ofCeratocystis ulmi. Canad. J. Bot.51, 1565–1571.

    Google Scholar 

  • Hepler, P. K., Palevitz, B. A., 1974: Microtubules and microfilaments. Ann. Rev. Plant Physiol.25, 309–362.

    Google Scholar 

  • Hiratsuka, Y., Takai, S., 1978: Morphology and morphogenesis of synnemata ofCeratocystis ulmi. Canad. J. Bot.56, 1909–1914.

    Google Scholar 

  • Ingold, C. T., 1959: Jelly as a water-reserve in fungi. Trans. Brit. mycol. Soc.42, 475–478.

    Google Scholar 

  • Jennings, L., Watkinson, S. C., 1982: Structure and development of mycelial strands inSerpula lacrimans. Trans. Brit. mycol. Soc.78, 465–474.

    Google Scholar 

  • Kiffer, E., Mangenot, F., Reisinger, O., 1971: Morphologie ultrastructurale et critères taxinomiques chez les Deutéromycètes. IV.Doratomyces purpureofuscus (Fres.) Morton et Smith. Rev. Ecol. Biol. Sol.8, 397–407.

    Google Scholar 

  • Kugler, J. H., 1966: The histochemical demonstration of glycogen. A comparative study by light and electron microscopy. M. Sc. Thesis, University of Sheffield.

  • Ledbetter, M. C., Porter, K. R., 1963: A “microtubule” in plant cell fine structure. J. Cell Biol.19, 239–250.

    Google Scholar 

  • Mesquita, J. F., 1972: Ultrastructures de formations comparables aux vacuoles autophagiques dans les cellules des racines de l'Alliumcepa L. et duLupinus albus L. Cytologia37, 95–110.

    Google Scholar 

  • Motta, J. J., 1969: Cytology and morphogenesis in the rhizomorph ofArmillaria mellea. Amer. J. Bot.56, 610–619.

    Google Scholar 

  • —, 1971: Histochemistry of the rhizomorph meristem ofArmillaria mellea. Amer. J. Bot.58, 80–87.

    Google Scholar 

  • Newcomb, E. H., 1969: Plant microtubules. Ann. Rev. Plant Physiol.20, 253–288.

    Google Scholar 

  • Park, D., Robinson, P. M., 1966: Trends in plant morphogenesis. London: E. G. Cutter.

    Google Scholar 

  • Raudaskoski, M., Vauras, R., 1982: Scanning electron microscope study of fruit-body differentiation inSchizophyllum commune. Trans. Brit. mycol. Soc.78, 475–481.

    Google Scholar 

  • Reisinger, O., 1972: Contribution à l'étude ultrastructurale de l'appareil sporifère chez quelques hyphomycètes à paroi mélanisée. Genèse, modification et décomposition. Doctorat d'Etat thesis, 192 p. University of Nancy I.

  • Saito, I., 1977: Studies on the maturation and germination of Sclerotia ofSclerotinia sclerotiorum (Lib.) de Bary, a causal fungus of bean stem rot. Rep. Hokkaido Prefect. Agric. Expt. Sta.26, 1–106.

    Google Scholar 

  • Schmid, R., Liese, W., 1970: Feinstruktur der Rhizomorphen vonArmillaria mellea. Phytopathol. Z.68, 221–231.

    Google Scholar 

  • Townsend, B. B., 1954: Morphology and development of fungal rhizomorphs. Trans. Brit. mycol. Soc.37, 222–233.

    Google Scholar 

  • —,Willetts, H. J., 1954: The development of Sclerotia of certain fungi. Trans. Brit. mycol. Soc.37, 213–221.

    Google Scholar 

  • Van der Valk, P., Marchant, R., 1978: Hyphal ultrastructure in fruit-body primordia of the BasidiomycetesSchizophyllum commune andCoprinus cinereus. Protoplasma95, 57–72.

    Google Scholar 

  • Watkinson, S. C., 1971: The mechanism of mycelial strand induction inSerpula lacrimans: a possible effect of nutrient distribution. New Phytol.70, 1079–1088.

    Google Scholar 

  • —, 1975: The relation between nitrogen nutrition and formation of mycelial strands inSerpula lacrimans. Trans. Brit. mycol. Soc.64, 195–200.

    Google Scholar 

  • - 1979: Growth of rhizomorphs, mycelial strands, coremia and sclerotia. In: Fungal walls and hyphal growth (Burnett, J. H., Trinci, A. P. J., eds.), pp. 93–113. British Mycological Society Symposium 2. Cambridge University Press.

  • Wergin, W. P., 1973: Development of Woronin Bodies from microbodies inFusarium oxysporum f. sp.lycopersici. Protoplasma76, 249–260.

    PubMed  Google Scholar 

  • Wolkinger, F., Plank, S., Brunegger, A., 1975: Rasterelektronenmikroskopische Untersuchungen an Rhizomorphen vonArmillaria mellea. Phytopathol. Z.84, 352–359.

    Google Scholar 

  • Zalokar, M., 1965: Integration of cellular metabolism. In: The fungi. Vol. I. The fungal cell (Ainsworth, G. C., Sussman, A. S., eds.), pp. 377–426. New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botton, B. Morphogenesis of coremia and rhizomorphs in the AscomyceteSphaerostilbe repens . Protoplasma 116, 99–114 (1983). https://doi.org/10.1007/BF01279827

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01279827

Keywords

Navigation