Skip to main content
Log in

Ultrastructural responses of tobacco pollen tubes to heat shock

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The effect of elevated temperatures on semivivo growth and ultrastructure of tobacco pollen tubes was investigated. Tube growth was decreased by about 50% at 35 °C, independent of the duration of treatment, and at 40 °C and above there was no growth of tubes. Heat treatment caused ultrastructural changes like accumulation of membranous materials, concentric stacking of rough endoplasmic reticulum, reduction in vesicle production by dictyosomes, increase in the fenestrated regions of the Golgi cisternae, swelling of mitochondrial saccules and increase in the electron density of the mitochondrial matrix. Furthermore, the dictyosomes of the treated tubes showed significant increase in the number of cisternae from 30 to 45 °C. The temperature induced changes were persistant at least for 24 h in 35 °C grown pollen tubes. The possible reasons for the tube growth inhibition are discussed on the basis of the ultrastructural alterations caused by elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HSPs:

heat shock proteins

SD:

standard deviation

ER:

endoplasmic reticulum

ATP:

adenosine triphosphate

References

  • Altschuler M, Mascarenhas JP (1982) Heat shock proteins and effects of heat shock in plants. Plant Mol Biol 1: 103–115

    Google Scholar 

  • Barabalchuk KA, Chernyavskaya VN (1975) Effect of high temperature on nuclear volume in spiderwort leaf cells. Tsitologiya 17: 1223–1226

    Google Scholar 

  • Bergfeld R, Schopfer P (1984) Transitory development of rough endoplasmic reticulum aggregates during embryo maturation in seeds of mustard (Sinapis alba L.). Eur J Cell Biol 34: 27–33

    Google Scholar 

  • Caldwell CR (1987) Temperature-induced protein conformational changes in barley root plasma membrane-enriched microsomes. Plant Physiol 84: 924–929

    Google Scholar 

  • Chen YR, Chou M, Ren SS, Chen YM, Lin CY (1988) Observations of soybean root meristematic cells in response to heat shock. Protoplasma 144: 1–9

    Google Scholar 

  • Cresti M, Ciampolini F, Mulcahy DLM, Mulcahy G (1985) Ultrastructure ofNicotiana alata pollen, its germination and early tube formation. Am J Bot 72: 719–727

    Google Scholar 

  • Cresti M, Ciampolini F, Pacini E, Ramulu K Sree, Devreux M, Laneri U (1977) Ultrastructural aspects of pollen tube growth inhibition after gamma irradiation inLycopersicum peruvianum. Theor Appl Genet 49: 297–303

    Google Scholar 

  • Das PK (1973) Developmental stability and thermosensitivity of different varieties of wheat. Nucleus 16: 175–179

    Google Scholar 

  • Heslop-Harrison J (1987) Pollen germination and pollen-tube growth. Int Rev Cytol 107: 1–78

    Google Scholar 

  • Kandasamy MK, Kristen U (1987) Pentachlorophenol affects mitochondria and induces formation of Golgi apparatus-endoplasmic reticulum hybrids in tobacco pollen tubes. Protoplasma 141: 112–120

    Google Scholar 

  • Krause GH, Santarious DA (1975) Relative thermostability of the chloroplast envelope. Planta 127: 285–299

    Google Scholar 

  • Kristen U (1976) Die Morphologie der Schleimsekretion im Fruchtknoten vonAptenia cordifolia. Protoplasma 89: 221–233

    Google Scholar 

  • — (1977) Auffällige ER-Konfigurationen in Protein-Polysaccharidschleim-sezernierenden pflanzlichen Drüsen. Planta 133: 161–167

    Google Scholar 

  • — (1980) Endoplasmic reticulum-dictyosome interconnections in ligula cells ofIsoetes lacustris. Eur J Cell Biol 23: 16–21

    Google Scholar 

  • Lockhausen J, Kristen U (1986) Dictyosome-endoplasmic reticulum associations in gland cells ofVeronica beccabunga. Eur J Cell Biol 42: 328–331

    Google Scholar 

  • Lynch DV, Lepock JR, Thompson JE (1987) Temperature-induced changes in lipid fluidity alter the conformation of proteins in senescing plant membranes. Plant Cell Physiol 28: 787–797

    Google Scholar 

  • Mansfield MA, Lingle WL, Key JL (1988) The effects of lethal heat shock on nonadapted and thermotolerant root cells ofGlycine max. J Ultrastruct Mol Struct Res 99: 96–105

    Google Scholar 

  • Mascarenhas JP (1984) Molecular mechanisms of heat stress tolerance. In: Collins GB, Petolino JP (eds) Applications of genetic engineering the crop improvement. Nijhoff/Junk, Dordrecht Boston, pp 391–425

    Google Scholar 

  • Mollenhauer HH, Morré DJ, Vanderwoude WJ (1975) Endoplasmic reticulum-Golgi apparatus associations in maize root tips. Mikroscopie 31: 257–272

    Google Scholar 

  • Nettancourt D DE, Devreux M, Bozzini A, Cresti M, Pacini E, Sarfatti G (1973) Ultrastructural aspects of self-incompatibility mechanism inLycopersicum peruvianum Mill. J Cell Sci 12: 403–419

    Google Scholar 

  • Nover L, Hellmud D, Neumann D, Scharf KD, Serfling E (1984) Heat shock responses of eukaryotic cells. Biol Zentralbl 103: 357–435

    Google Scholar 

  • Picton JM, Steer MW (1981) Determination of secretory vesicle production rates by dictyosomes in pollen tubes ofTradescantia using cytochalasin D. J Cell Sci 49: 261–272

    Google Scholar 

  • — — (1983) Membrane recycling and the control of secretory activity in pollen tubes. J Cell Sci 63: 303–310

    Google Scholar 

  • Reiss HD, Herth W (1982) Disoriented growth of pollen tubes ofLilium longiflorum Thunb. induced by prolonged treatment with the calcium-chelating antibiotic, chlorotetracycline. Planta 156: 218–225

    Google Scholar 

  • Resueno MC, Stocket JC, Giménez MC, Diez JL (1973) Effect of supraoptimal temperature on meristematic cell nucleoli. J Microsc (Paris) 16: 87–94

    Google Scholar 

  • Robinson DG, Kristen U (1982) Membrane flow via the Golgi apparatus of higher plant cells. Int Rev Cytol 77: 89–127

    Google Scholar 

  • Santarius KA (1980) Membrane lipids in heat injury of spinach chloroplasts. Plant Physiol 49: 1–6

    Google Scholar 

  • Schlesinger MJ, Ashburner M, Tissieres A (1982) Heat shock from bacteria to man. Cold Spring Harbour Laboratory, New York

    Google Scholar 

  • Schnepf E (1963) Zur Cytologie und Physiologie pflanzlicher Drüsen. 2. Teil. Über die Wirkung von Sauerstoffentzug und von Atmungsinhibitoren auf die Sekretion des Fangschleimes vonDrosophyllum und auf die Feinstruktur der Drüsenzellen. Flora 153: 23–48

    Google Scholar 

  • — (1965) Physiologie und Morphologie sekretorischer Pflanzenzellen. In: Wohlfahrt-Bottermann KE (ed) Funktionelle und morphologische Organisation der Zelle. 2. Wiss Konf Ges Dtsch Naturforscher Ärzte: Sekretion und Exkretion. Springer, Berlin Heidelberg New York, pp 72–88

    Google Scholar 

  • —, Schmitt U (1981) Destruction and reconstitution of the dictyosome in the chrysophycean flagellate,Poterioochromonas malhamensis, after heat shock, and other heat-shock effects. Protoplasma 106: 261–271

    Google Scholar 

  • Schrauwen JAM, Reijnen WH, Deleeuw HCGM, Van Herpen MMA (1986) Response of pollen to heat stress. Acta Bot Neerl 35: 321–327

    Google Scholar 

  • Skogqvist I (1974) Induction of heat sensitivity of wheat roots and its effects on mitochondria, adenosine triphosphate, triglyceride and total lipid content. Exp Cell Res 86: 285–294

    Google Scholar 

  • Smith RA (1979) Growth temperature acclimation byAmoeba proteus: effects on cytoplasmic organelle morphology. Protoplasma 101: 23–35

    Google Scholar 

  • —, Bell LGE, Ord MJ (1979) Morphological alterations in the mitochondria ofAmoeba proteus induced by uncoupling agents. J Cell Sci 37: 217–229

    Google Scholar 

  • Stockem W, Korohoda W (1975) Effects of induced pinocytotic activity and extreme temperatures on the morphology of Golgi bodies inAmoeba proteus. Cell Tissue Res 157: 541–552

    Google Scholar 

  • Spurr RA (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43

    Google Scholar 

  • Vanderwoude WJ, Morré DJ (1968) Endoplasmic reticulum-dictyosome secretory vesicle associations in pollen tubes ofLilium longiflorum Thunb. Proc Indiana Acad Sci 77: 164–170

    Google Scholar 

  • Xiao CM, Mascarenhas JP (1985) High temperature induced thermotolerance in pollen tubes ofTradescantia and heat shock proteins. Plant Physiol 78: 887–890

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandasamy, M.K., Kristen, U. Ultrastructural responses of tobacco pollen tubes to heat shock. Protoplasma 153, 104–110 (1989). https://doi.org/10.1007/BF01322470

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01322470

Keywords

Navigation