Skip to main content
Log in

The organization of cortical microtubule arrays in the radish root hair

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Cortical microtubule arrays in the radish root hair were analyzed from reconstructions of serial ultra-thin sections in order to test extant hypotheses concerning the role of microtubules in the deposition of oriented microfibrils of cellulose. Passing away from the tip, root hairs exhibit a transition from random to oriented deposition of microfibrils at approximately 25 μm. Along the root hair, passing back from the tip, the microtubules: a) increase in number to a plateau at 25 μm; b) change their length profiles from approximately 60% less than 1 μm long in the hair tip to approximately 40% less than 1 μm long at 60 μm; c) maintain a constant pattern of angular deviation from the long axis, which is similar to the deviation pattern of the oriented wall fibrils; d) maintain a constant (approximately 70% of tubules) close (within 50 nm) proximity to the plasma membrane (PM); e) maintain a low (approximately 20%) degree of inter-microtubule proximity (i.e., within 50 nm of one another); f) show evidence for some variable long range (>50 nm) association. Fixation with glutaraldehyde in a complete microtubule polymerization medium (MTPM), or pretreatment with cytochalasin B cause an approximate twofold increase in 1. the proportion of long microtubules in the tip region and 2. microtubules within 50 nm of one another. Fixation in incomplete MTPM (without GTP) produces results similar to phosphate buffer controls. Alternative explanations for these results are examined. A new hypothesis accounting for microtubule involvement in oriented microfibril deposition is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajer, A., Mole-Bajer, J., 1969: Formation of spindle fibers, kinetochore orientation and behavior of the nuclear envelope during mitosis in endosperm. Fine structure andin vitro studies. Chromosoma27, 448–484.

    Google Scholar 

  • Behnke, O., Forer, A., 1967: Evidence for four classes of microtubules in individual cells. J. Cell Sci.2, 169–192.

    Google Scholar 

  • Brinkley, B. R., Cartwright, J., 1975: Cold-labile and cold stable microtubules in the mitotic spindle of mammalian cells. Ann. N.Y. Acad. Sci.253, 428–439.

    Google Scholar 

  • Brower, D. L., Hepler, P. K., 1976: Microtubules and secondary wall deposition in xylem: the effects of Isopropyl-N-phenylcarbamate. Protoplasma87, 91–111.

    Google Scholar 

  • Brown, R. M., Montezinos, D., 1975: Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasmalemma. Proc. Nat'l. Acad. Sci.73, 143–147.

    Google Scholar 

  • Bryan, J., 1976: A quantitative analysis of microtubule elongation. J. Cell Biol.71, 749–767.

    Google Scholar 

  • Buckley, I. K., Porter, K. R., 1967: Cytoplasmic fibrils in living cultured cells. Protoplasma64, 349–357.

    Google Scholar 

  • Byers, B., Shiner, K., Goetsch, L., 1978: The role of spindle pole bodies and modified microtubule ends in the initiation of microtubule assembly inSaccharomyces cerevisiae. J. Cell Sci.30, 331–352.

    Google Scholar 

  • Cormack, R. G. H., Lemay, P., MacLachlan, G. A., 1963: Calcium in the root hair wall. J. exp. Bot.14, 311–315.

    Google Scholar 

  • Forer, A., Behnke, O., 1972: An actin-like component in spermatocytes of a crane fly (Nephrotoma suturalis Loew) I. The spindle. Chromosome39, 145–173.

    Google Scholar 

  • Goldstein, M. A., Entman, M. L., 1979: Microtubules in mammalian heart muscle. J. Cell Biol.80, 183–195.

    Google Scholar 

  • Goode, D., 1973: Kinetics of microtubule formation after cold disaggregation of the mitotic apparatus. J. mol. Biol.80, 531–538.

    Google Scholar 

  • Griffith, L. M., Pollard, T. D., 1978: Evidence for actin filament-microtubule interaction mediated by microtubule associated proteins. J. Cell Biol.21, 958–965.

    Google Scholar 

  • Gunning, B. E. S., Hardham, A. R., Hughes, J. E., 1978: Evidences for initiation of microtubules in discrete regions of the cell cortex inAzolla root tip cells, and an hypothesis on the development of cortical arrays of microtubules. Planta143, 161–179.

    Google Scholar 

  • Hardham, A. R., Gunning, B. E. S., 1978: Structure of cortical microtubule arrays in plant cells. J. Cell Biol.77, 14–34.

    Google Scholar 

  • Heath, I. B., 1974: A unifying hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J. theor. Biol.47, 1–5.

    Google Scholar 

  • —,Heath, M. C., 1978: Microtubules and organelle movements in the rust fungusUromyces phaseoli var.vignae. Cytobiologie16, 393–411.

    Google Scholar 

  • Hepler, P. K., Fosket, D. E., 1971: The role of microtubules in vessel member differentiation inColeus. Protoplasma72, 213–236.

    Google Scholar 

  • —,Jackson, W. T., 1968: Microtubules and early stages of cell plate formation in the endosperm ofHaemanthus katherinae Baker. J. Cell Biol.38, 437–446.

    Google Scholar 

  • —,McIntosh, J. R., Cleland, S., 1970: Intermicrotubule bridges in mitotic spindle apparatus. J. Cell Biol.45, 438–444.

    Google Scholar 

  • —,Newcomb, E. H., 1964: Microtubules and fibrils in the cytoplasm ofColeus cells undergoing secondary wall deposition. J. Cell Biol.20, 529–533.

    Google Scholar 

  • —,Palevitz, B. A., 1974: Microtubules and microfilaments. Ann. Rev. Pl. Physiol.25, 309–362.

    Google Scholar 

  • Ledbetter, M. C., Porter, K. R., 1963: A “Microtubule” in plant cell fine structure. J. Cell Biol.19, 239–250.

    Google Scholar 

  • Luftig, R. B., McMillan, P. N., Weatherbee, J. A., Weihing, R. R., 1977: Increased visualization of microtubules by an improved fixation procedure. J. Histochem. Cytochem.25, 175–187.

    Google Scholar 

  • Maitre, S. C., De, D. N., 1971: Role of microtubules in secondary thickening of differentiating xylem elements. J. Ultrastruct. Res.34, 15–21.

    Google Scholar 

  • Meuller, S. C., Brown, R. M., 1976: Cellulose microfibrils: Nascent stage of synthesis in a higher plant cell: Science194, 949–951.

    Google Scholar 

  • Newcomb, E. H., 1969: Plant Microtubules. Ann. Rev. Pl. Physiol.20, 253–288.

    Google Scholar 

  • —,Bonnett, H. T., 1965: Cytoplasmic microtubules and wall microfibril orientation in root hairs of radish. J. Cell Biol.27, 575–589.

    Google Scholar 

  • Ordin, L., Hall, M. A., 1968: Cellulose synthesis in higher plants from UDP-Glucose. Plant Physiol.43, 473–476.

    Google Scholar 

  • Pickett-Heaps, J. D., 1967: Effects of colchicine on the ultrastructure of dividing plant cells, xylem wall differentiation and distribution of cytoplasmic microtubules. Dev. Biol.15, 206–236.

    Google Scholar 

  • —, 1969: The evolution of the mitotic apparatus: an attempt at comparative ultrastructural cytology in dividing plant cells. Cytobiologie3, 257–280.

    Google Scholar 

  • Preston, R. D., 1964: Structural and mechanical aspects of plant cell walls with particular reference to synthesis and growth. In: Formation of wood in forest trees (Zimmerman, M., ed.), pp. 168–188. New York: Academic Press.

    Google Scholar 

  • —, 1974: Physical biology of plant cell walls, pp. 444–456. London: Chapman-Hall.

    Google Scholar 

  • Rebhun, L. I., 1972: Polarized intracellular particle transport: saltatory movements and cytoplasmic streaming. Int. Rev. Cytology32, 93–137.

    Google Scholar 

  • Robinson, D. G., Preston, R. D., 1972: Plasmalemma structure in relation to microfibril biosynthesis inOocystis. Planta104, 234–246.

    Google Scholar 

  • Schnepf, E., 1974: Microtubules and cell wall formation. Port. Acta Biol. series A.14, 451–462.

    Google Scholar 

  • Seagull, R. W., 1978: Arrangement of microtubules and microfilaments during oriented secondary wall formation. 9th International Cong. on Electron MicroscopyII, 262–263.

    Google Scholar 

  • —,Heath, I. B., 1979. The effects of tannic acid on thein vivo preservation of microfilaments. European J. Cell Biol.20, 184–188.

    Google Scholar 

  • Van der Woude, W. J., Lambi, C. A., Morré, D. J., 1974: β-glucan synthetase of plasma membrane of Golgi apparatus from onion stem. Plant Physiol.54, 333–340.

    Google Scholar 

  • Villemez, C. L., McNab, J. M., Albersheim, P., 1968: Formation of plant cell wall polysaccharides. Nature218, 878–880.

    Google Scholar 

  • Yahara, I., Edelman, G. M., 1975: Electron microscopic analysis of the modulation of lymphocyte receptor mobility. Exp. Cell Res.91, 125–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seagull, R.W., Heath, I.B. The organization of cortical microtubule arrays in the radish root hair. Protoplasma 103, 205–229 (1980). https://doi.org/10.1007/BF01276268

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01276268

Keywords

Navigation