Skip to main content
Log in

The structure and prophylactic role of the angiosperm embryo sac and its associated tissues:Zea mays as a model

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Various developmental phases can be distinguished in the definition of the archesporium and the early life of the embryo, takingZea mays (maize) as a model within the family Gramineae, and other families where pertinent: (1) the isolation of the megasporocyte and the functional spore derived from it; (2) the maturation of the specialized walls of the embryo sac, and their reinforcement by ensheathments derived from the contiguous nucellar cells during a sequence of phased genetic ablation; (3) the differentiation of the synergids, the associated flange, and the filiform apparatuses; (4) the blocking of the pollen tube pathway by secondary secretions in the micropylar region and the coagulation of the pollen tube cytoplasm within the filiform apparatuses during the process of fertilization; and finally (5) the development of a compound cutinized envelope of four fused layers (six where the outer integument is also involved) after fertilization. For the nascent haploid generation, the period of maximum vulnerability in respect to both pathogen invasion and the transition from diplophase control occurs during these phases. It is concluded that many of the protective features form a prophylactic shield and are key components of the angiosperms in general, which may have contributed to their evolutionary success as a group. Other physiological or biochemical adaptations or barriers may also supplement the mainly structural features described here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett CW (1969) Seed transmission of plant viruses. Adv Virus Res 14: 21–261

    Google Scholar 

  • Bouman F (1984) The ovule. In: Johri BM (Ed) Embryology of angiosperms. Springer, Berlin New York Heidelberg Tokyo, pp 123–158

    Google Scholar 

  • Brown AJ (1907) On the existence of a semi-permeable membrane enclosing the seed of the Gramineae. Ann Bot 21: 79–87

    Google Scholar 

  • — (1909) The selective permeability of the coverings of the seed ofHordeum vulgare. R Soc Proc B 81: 82–93

    Google Scholar 

  • Carroll TW (1974) Barley stripe mosaic virus in sperm and vegetative cells of barley pollen. Virology 60: 21–28

    PubMed  Google Scholar 

  • —, Mayhew DE (1976a) Anther and pollen infection in relation to the pollen and seed transmissibility of two strains of barley stripe mosaic virus in barley. Can J Bot 54: 1604–1621

    Google Scholar 

  • — — (1976b) Occurrence of virions in developing ovules and embryo sacs of barley in relation to the seed transmissibility of barley stripe mosaic virus in barley. Can J Bot 54: 2497–2512

    Google Scholar 

  • Cass DD (1972) Occurrence and development of a filiform apparatus in the egg ofPlumbago capensis. Am J Bot 59: 279–283

    Google Scholar 

  • —, Jensen WA (1970) Fertilization in barley. Am J Bot 57: 62–70

    Google Scholar 

  • Chen FQ, Foolad MR (1997) Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration. Plant Mol Biol 35: 821–828

    PubMed  Google Scholar 

  • Cooper DC (1951) Caryopsis development following matings between diploid and tetraploid strains ofZea mays. Am J Bot 38: 702–708

    Google Scholar 

  • Dahlgren KYO (1928) Hakenförmige Leistenbildung bei Synergiden. Ber Deutsch Bot Ges 46: 434–443

    Google Scholar 

  • Davis GL (1966) Systematic embryology of the angiosperms. Wiley, New York

    Google Scholar 

  • Diboll AG (1968) Fine structural development of the megagametophyte ofZea mays following fertilization. Am J Bot 55: 787–806

    Google Scholar 

  • —, Larson DA (1966) An electron microscopic study of the mature megagametophyte inZea mays. Am J Bot 53: 391–402

    PubMed  Google Scholar 

  • Dickinson HG, Andrews L (1977) The role of membrane-bound cytoplasmic inclusions during gametogenesis inLilium longiflorum Thunb. Planta 134: 229–240

    Google Scholar 

  • —, Heslop-Harrison J (1970) The ribosome cycle, nucleoli and cytoplasmic nucleoloids during meiosis in the anther ofLilium. Protoplasma 69: 187–200

    Google Scholar 

  • — — (1977) Ribosomes, membranes and organelles during meiosis in angiosperms. Philos Trans R Soc Lond Ser B 277: 327–342

    Google Scholar 

  • Eschrich W, Currier HB (1964) Identification of callose by its diachrome and fluorochrome reactions. Stain Technol 39: 303–307

    Google Scholar 

  • Gunning BES, Pate JS (1969) “Transfer cells” — plant cells with wall ingrowth, specialized in long to short distance transport of solutes: their occurrence, structure and development. Protoplasma 68: 107–133

    Google Scholar 

  • Heslop-Harrison J (1964) Cell walls, cell membranes and protoplasmic connections during meiosis and pollen development. In: Linskens HF (ed) Pollen physiology and fertilization. North-Holland, Amsterdam, pp 39–47

    Google Scholar 

  • — (1966) Cytoplasmic connexions between angiosperm meiocytes. Ann Bot 30: 221–230

    Google Scholar 

  • — (1971) The cytoplasm and its organelles during meiosis. In: Heslop-Harrison J (ed) Pollen development and physiology. Butterworths, London, pp 16–31

    Google Scholar 

  • — (1972) Sexuality of angiosperms. In: Steward FC (ed) Plant physiology: a treatise, vol 6C. Academic Press, New York, pp 134–289

    Google Scholar 

  • — (1982) The reproductive versatility of flowering plants: an overview. In: Meudt WJ (ed) Strategies of plant reproduction: BARC Symposium 6. Allanheld Osmun, London, pp 3–18

    Google Scholar 

  • —, Heslop-Harrison Y (1984) Pollen and pollen tube physiology. Welsh Plant Breed Stn Annu Rep 1984: 106–108

    Google Scholar 

  • —, Mackenzie A (1967) Autoradiography of soluble [2-14C]-thymidine derivatives during meiosis and microsporogenesis in theLilium anther. J Cell Sci 2: 387–400

    PubMed  Google Scholar 

  • Heslop-Harrison JS, Reger BJ (1986) X-ray microprobe mapping of certain elements in the ovary ofZea mays L. Ann Bot 57: 819–822

    Google Scholar 

  • Heslop-Harrison Y (1977) The pollen-stigma interaction: pollen tube penetration inCrocus. Ann Bot 41: 913–922

    Google Scholar 

  • Heslop-Harrison Y, Heslop-Harrison J (1982) The microfibrillar component of the pollen intine: some structural features. Ann Bot 50: 831–842

    Google Scholar 

  • —, Heslop-Harrison JS (1997) The pollen-tube activated abscission zone in the stigma of pearl millet: structural and physiological aspects. Can J Bot 75: 1200–1207

    Google Scholar 

  • —, Heslop-Harrison J, Reger BJ (1985a) The pollen-stigma interaction in the grasses 7: pollen-tube guidance and the regulation of tube number inZea mays L. Acta Bot Neerl 34: 193–211

    Google Scholar 

  • —, Reger BJ, Heslop-Harrison J (1985b) Wide hybridization: pollination ofZea mays L. bySorghum bicolor (L.) Moench. Theor Appl Genet 70: 252–258

    Google Scholar 

  • Hofmeister W (1849) Die Entstehung des Embryo der Phanerogamen: eine Reihe mikroskopischer Untersuchungen. Linnean Society of London, Friedrich Hofmeister, Leipzig

    Google Scholar 

  • — (1857) Neuere Beobachtung über Embryobildung der Phanerogamen. Jahrb Wiss Bot 1: 82–188

    Google Scholar 

  • Huang BQ, Russell SD (1994) Fertilization inNicotiana tabacum — cytoskeletal modifications in the embryo sac during synergid degeneration: a hypothesis for short-distance transport of sperm cells prior to gamete fusion. Planta 194: 200–214

    Google Scholar 

  • —, Sheridan WF (1994) Female gametophyte development in maize: microtubular organization and embryo sac polarity. Plant Cell 6: 845–861

    PubMed  Google Scholar 

  • Ishikawa M (1918) Studies on the embryo sac and fertilization inOenothera. Ann Bot 32: 279–317

    Google Scholar 

  • Jensen WA, Fisher DB (1968) Cotton embryogenesis: the entrance and discharge of the pollen tube in the embryo sac. Planta 78: 158–183

    Google Scholar 

  • —, Schulz P, Ashton ME (1977) An ultrastructural study of early endosperm development and synergid changes in unfertilized cotton ovules. Planta 133: 179–189

    Google Scholar 

  • Kiesselbach TA (1949) The structure and reproduction of corn. Univ Nebr Coll Agric Res Bull 161: 1–95

    Google Scholar 

  • —, Walker ER (1952) Structure of certain specialized tissues in the kernel of corn. Am J Bot 39: 561–570

    Google Scholar 

  • Knox RB, Heslop-Harrison J (1970) Direct demonstration of the low permeability of the angiosperm meiotic tetrad using a fluorogenic ester. Z Pflanzenphysiol 62: 451–459

    Google Scholar 

  • Mackenzie A, Heslop-Harrison J, Dickinson HG (1967) Elimination of ribosomes during meiotic prophase. Nature 215: 997–999

    PubMed  Google Scholar 

  • Maeda H, Ishida N (1976) Specificity of binding of hexpyranosyl polysaccharides with fluorescent brightener. J Biochem Tokyo 62: 276–278

    Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York

    Google Scholar 

  • Maze J, Bohm LR (1972) Comparative embryology ofStipa elmeri (Gramineae). Can J Bot 51: 235–247

    Google Scholar 

  • —, Lin SC (1975) A study of the mature megagametophyte ofStipa elmeri. Can J Bot 53: 2958–2977

    Google Scholar 

  • Miller EC (1919) Development of the pistillate spikelet and fertilization inZea mays L. J Agric Res 18: 255–266

    Google Scholar 

  • Mogensen HL (1978) Synergids ofProboscidea louisianica (Martiniaceae) before fertilization. Phytomorphology 28:114–122

    Google Scholar 

  • — (1988) Exclusion of male mitochondria and plastids during syngamy as a basis for maternal inheritance. Proc Natl Acad Sci USA 85: 2524–2427

    Google Scholar 

  • Newcomb W (1973) The development of the embryo sac of sunflowerHelianthus annuus after fertilization. Can J Bot 51: 879–890

    Google Scholar 

  • Norstog K (1974) Nucellus during early embryogeny in barley: fine structure. Bot Gaz 135: 97–103

    Google Scholar 

  • Randolph LF (1936) Developmental morphology of the caryopsis in maize. J Agric Res 53: 883–916

    Google Scholar 

  • Rodkiewicz B (1970) Callose in cell walls during megasporogenesis in angiosperms. Planta 93: 39–47

    Google Scholar 

  • —, Górska-Brylass A (1967) Occurrence of callose in the walls of meiotically dividing cells in the ovule ofOrchis. Naturwissenschaften 54: 499

    Google Scholar 

  • Russell SD (1979) Fine structure of megagametophyte development inZea mays. Can J Bot 57: 1094–1110

    Google Scholar 

  • — (1982) Fertilization inPlumbago zeylanica: entry and discharge of the pollen tube in the embryo sac. Can J Bot 60: 2219–2230

    Google Scholar 

  • Schacht H (1857) Über Pflanzen-Befruchtung. Jahrb Wiss Bot 1: 193–232

    Google Scholar 

  • Schel JHN, Kieft H, Van Lammeren AAM (1984) Interactions between embryo and endosperm during early developmental stages of maize caryopses (Zea mays). Can J Bot 62: 2842–2853

    Google Scholar 

  • Scott JE, Quintarelli G, Dellovo MC (1964) The chemical and histochemical properties of alcian blue I: the mechanism of alcian blue staining. Histochemistry 4: 73–85

    PubMed  Google Scholar 

  • Tilton VR (1980) The nucellar epidermis and micropyle ofOrnithogalum caudatum (Liliaceae) with a review of these structures in other taxa. Can J Bot 58:1872–1884

    Google Scholar 

  • — (1981) Ovule development inOrnithogalum caudatum (Liliaceae) with a review of the selected papers on angiosperm reproduction IV: egg apparatus structure and function. New Phytol 88: 505–531

    Google Scholar 

  • —, Lersten NR (1981a) Ovule development inOrnithogalum caudatum with a review of selected papers on angiosperm reproduction I: integuments, funiculus and vascular tissue. New Phytol 88: 439–457

    Google Scholar 

  • — — (1981b) Ovule development inOrnithogalum caudatum with a review of selected papers on angiosperm reproduction II: nucellus and megagametophyte. New Phytol 88: 477–504

    Google Scholar 

  • Van der Pluijm JE (1964) An electron microscopic investigation of the filiform apparatus ofTorenia fournieri. In: Linskens HF (ed) Pollen physiology and fertilization. North-Holland, Amsterdam, pp 6–16

    Google Scholar 

  • Van Lammeren AAM (1986) A comparative ultrastructural study of the megametophytes in two strains ofZea mays L. before and after fertilization. Agric Univ Wageningen Pap 86: 1–36

    Google Scholar 

  • Van Went JL (1970) The ultrastructure of the fertilized embryo sac ofPetunia. Acta Bot Neerl 19: 313–322

    Google Scholar 

  • Webb MC, Gunning BES (1994) Embryo sac development inArabidopsis thaliana II: the cytoskeleton during megagametogenesis. Sex Plant Reprod 7: 153–163

    Google Scholar 

  • Willingale J, Mantle PG (1985) Stigma constriction in pearl millet, a factor influencing reproduction and disease. Ann Bot 56: 109–115

    Google Scholar 

  • Willemse MTM, Van Lammeren AAM (1988) Structure and function of the microtubular cytoskeleton during megasporogenesis and embryo sac development inGasteria verrucosa (Mill.) H. Duval. Sex Plant Reprod 1: 74–82

    Google Scholar 

  • —, Van Went JL (1984) The female gametophyte. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York Tokyo, pp 159–192

    Google Scholar 

  • Wylie RB (1923) Sperms ofVallisneria spiralis. Bot Gaz 75: 191–202

    Google Scholar 

  • You R, Jensen WA (1985) Ultrastructural observations on the mature megagametophyte and fertilization in wheat (Triticum aestivum). Can J Bot 63: 163–178

    Google Scholar 

  • Yu HS, Russell SD (1994) Populations of plastids and mitochondria during male reproductive cell maturation inNicotiana tabacum: a cytological basis for occasional biparental inheritance of plastids. Planta 193: 115–122

    Google Scholar 

  • —, Huang BQ, Russell SD (1994) Transmission of male cytoplasm during fertilization inNicotiana tabacum. Sex Plant Reprod 7: 313–332

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heslop-Harrison, J., Heslop-Harrison, J.S. & Heslop-Harrison, Y. The structure and prophylactic role of the angiosperm embryo sac and its associated tissues:Zea mays as a model. Protoplasma 209, 256–272 (1999). https://doi.org/10.1007/BF01453454

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01453454

Keywords

Navigation