Skip to main content
Log in

The upper mantle beneath Kapfenstein and the Transdanubian volcanic region, E Austria and W Hungary: A comparison

Der obere Mantel unterhalb Kapfenstein und der Transdanubischen Vulkanischen Region, E-Österreich und W-Ungarn: Ein Vergleich

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

A representative suite of ultramafic xenoliths from Kapfenstein, Austria, has been investigated petrographically. Textures and mineral chemistries are compared with published data on Hungarian xenoliths and discussed within the framework of the hypothesis of a mantle diapir beneath the Transdanubian Volcanic Region (TVR) of E Austria and W Hungary. We succeeded in recognizing important differences which seem to support the TVR mantle diapir concept. Below the external part of the TVR (Kapfenstein) the upper mantle seems to be essentially untectonized and lithologically rather monotonous (e.g., Type II clinopyroxenites are absent). In contrast, both deformed (equigranular) and undeformed (protogranular) peridotite xenoliths occur in the internal part (Balaton area) where Type II clinopyroxenite xenoliths as well as Type I/Type II composite rocks are present. It is remarkable that at Gérce (Hungary), situated approximately mid-way between the internal and external regions, almost exclusively porphyroclastic xenoliths occur.

The undeformed xenoliths from Kapfenstein are largely unfractionated. A small proportion exhibits depletions in basaltic component or some mild influence of mantle metasomatism. Several mineral chemical parameters, such asmg-number of olivine, Al2O3 content of spinel and clinopyroxene, apparent pyroxene equilibration temperature, etc., show a narrow distribution with a pronounced maximum in the undeformed Kapfenstein xenoliths. By contrast, the deformed xenoliths from the internal TVR show a much broader range of values with no distinct maximum, attesting to a more complex chemical and physical evolution. Thus a direct relationship between deformation and chemistry seems to be confirmed. The deformed rocks can be extreme in two ways: they can either be strongly depleted or strongly enriched as documented by the high contents of clinopyroxene in equigranular xenoliths from Szigliget. Tectonization apparently opens the way for mass transport in either direction.

Zusammenfassung

Eine repräsentative Suite von ultramafischen Xenolithen von Kapfenstein, Steiermark, wurde petrologisch untersucht. Die Gefüge und Mineralchemismen werden mit publizierten Daten von ungarischen Vorkommen verglichen und im Rahmen der Mantel-Diapir-Hypothese für die Transdanubische Vulkanische Region (TVR) diskutiert. Der Vergleich ergab wesentliche Unterschiede, welche das TVR-Mantel-Diapir-Konzept unterstützen. Der Mantel unterhalb des äußeren Teiles der TVR (Kapfenstein) ist praktisch untektonisiert und lithologisch monoton (z.B. fehlen Typ II Klinopyroxenite). Im Gegensatz dazu finden sich im inneren Teil (Balaton-Region) sowohl deformierte (equigranulare) als auch nicht-deformierte (protogranulare) Xenolithe zusammen mit Typ II Klinopyroxeniten. Auch zusammengesetzte Xenolithe, bestehend aus Typ I und Typ II Gesteinen sind vorhanden. Bemerkenswert ist, daß bei Gérce (Ungarn), eine Lokalität, welche sich zwischen dem inneren und äußeren Teil der TVR befindet, fast ausschließlich nur porphyroklastische Xenolithe vorkommen.

Die undeformierten Xenolithe von Kapfenstein sind größtenteils unfraktioniert. Einige wenige zeigen Verarmungen oder geringfügige metasomatische Anreicherungen. Histogramme mineralchemischer Parameter zeigen sehr deutlich die Unterschiede zwischen den undeformierten Kapfenstein Xenolithen und den deformierten der inneren TVR. Die Kapfenstein Xenolithe zeigen typischerweise regelmäßige Verteilungen mit einem deutlichen Maximum. Die Xenolithe der inneren TVR hingegen zeigen eine flache Verteilung und weisen damit auf eine wesentlich komplexere chemische Entwicklung hin. Unsere Daten scheinen einen direkten Zusammenhang zwischen Deformation und chemischer Veränderung aufzuzeigen. Die deformierten Gesteine können in dieser Hinsicht zwei Extreme annehmen: Sie können entweder stark verarmt oder stark angereichert sein. Letzeres wird z.B. beeindruckend durch die hohen Gehalte an Klinopyroxen der equigranularen Xenolithe von Szigliget dokumentiert. Tektonisierung scheint die Wege für Massen-Transporte in beiden Richtungen zu öffnen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aranda-Gourez JJ, Ortega-Gutierrez F (1987) Mantle xenoliths in Mexico. In:Nixon PH (ed) Mantle Xenoliths. J Wiley and Sons, pp 75–84

  • Basu AR (1977) Textures, microstructures and deformation of ultramafic xenoliths from San Quintin, Baja California. Tectonophysics 43: 213–246

    Google Scholar 

  • Berger E (1977) Sur la presence d'un lherzolite a grenats en enclave dans le basalte alcalin de la Vestide du Pal (Ardeche): conditions d'equilibre, implications petrographiques et geotectoniques. CR Acad Sci Paris (Ser D) 284: 709–712

    Google Scholar 

  • Bonatti E, Clocchiatti R, Colantoni P, Gelmini R, Marinelli G, Ottonello G, Sanctacroce R, Taviani M, Abdel-Meguid AA, Assaf HS, ElTahir MA (1983) Zabargad (St. John's Island): An uplifted fragment of sub-Red Sea lithosphere. J Geol Soc 140: 677–691

    Google Scholar 

  • Brown GM, Pinsent RH, Coisy P (1980) The petrology of spinel-peridotites from the Massif Central, France. Am J Sci 280A: 471–498

    Google Scholar 

  • Cabanes N, Briqueu L (1986) Hydration of an active shear zone: Interaction between deformation, metasomatism and magmatism: The spinel-lherzolites from the Montferrier (southern France) Oligocene basalts. Earth Planet Sci Lett 81: 233–244

    Google Scholar 

  • Carswell DA, Griffin WL, Kresten P (1984) Peridotite nodules from the Ngopetsoeu and Lipelaneng kimberlites, Lesotho: a crustal or mantle origin. In:Kornprobst J (ed) Kimberlites Elsevier, pp 229–243

  • Clarke SP, Ringwood AE (1964) Density distribution and constitution of the mantle. Rev Geophys 2: 35–88

    Google Scholar 

  • Coisy P (1977) Structure et chimisme des peridotites en enclaves dans les basaltes du Massif Central. Modeles geodynamiques du manteau suprieur. Univ. Nantes, unpublished thesis : 115 pp

  • ——Nicolas A (1978) Regional structure and geodynamics of the Massif Central. Nature (London) 274: 429–432

    Google Scholar 

  • Dautria JM, Girod M (1987) Cenozoic volcanism associated with swells and rifts. In:Nixon PH (ed) Mantle Xenoliths. J Wiley and Sons, pp 195–214

  • Dawson JB (1980) Kimberlites and their Xenoliths. Springer, Berlin Heidelberg New York, 252pp

    Google Scholar 

  • —(1984) Contrasting types of upper-mantle metasomatism? In:Kornprobst J (ed) Kimberlites II: The mantle and crust-mantle relationships. Elsevier, pp 289–294

  • Dietrich H, Poultidis H (1985) Petrology of ultramafic xenoliths in alkali basalts from Klöch and Stradner Kogel (Styria, Austria). N Jh Miner Abh 151: 131–140

    Google Scholar 

  • Downes H (1987) Relationship between geochemistry and textural type in spinel lherzolites, Massif Central and Languedoc, France. In:Nixon PH (ed) Mantle Xenoliths. J Wiley and Sons, pp 125–133

  • Embey-Isztin A, Thirlwall MF (in prep) Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin, Hungary: evidence for an association between enrichment and texture in the upper mantle

  • Dupuy C, Dostal J, Dautria JM, Girod M (1986) Geochemistry of spinel peridotite inclusions in basalts from Hoggar, Algeria. J Afric Earth Sci 5: 209–215

    Google Scholar 

  • Embey-Isztin A (1976) Amphibolite/lherzolite composite xenolith from Szigliget, North of the Lake Balaton, Hungary. Earth Planet Sci Lett 31: 297–304

    Google Scholar 

  • —— (1978) On the petrology of spinel lherzolite nodules in basaltic rocks from Hungary and Auvergne, France. Annals hist nat Mus natn hung 70: 27–44

    Google Scholar 

  • —— (1984) Texture types and their relative frequencies in ultramafic and mafic xenoliths from Hungarian basaltic rocks. Annals hist nat Mus natn hung 76: 27–42

    Google Scholar 

  • ——Scharbert HG, Dietrich H, Poultidis H (1989) Petrology and geochemistry of peridotite xenoliths in alkali basalts from the Transdanubian Volcanic Region, West Hungary. J Petrol 30: 79–105

    Google Scholar 

  • —— —— —— —— (1990) Mafic granulite and clinopyroxenite xenoliths from the Transdanubian Volcanic Region (Hungary): implications for the deep structure of the Pannonian Basin. Min Mag 54: 463–483

    Google Scholar 

  • Francis DM (1976) Amphibole pyroxenite xenoliths: cumulate or replacement phenomena from the upper mantle, Nunivak Island, Alaska. Contr Mineral Petrol 58: 51–61

    Google Scholar 

  • Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38: 129–176

    Google Scholar 

  • Harte B (1977) Rock nomenclature with particular relation to deformation and recrystallization textures in olivine-bearing xenoliths. J Geol 85: 279–288

    Google Scholar 

  • Hauser A (1954) Der steirische Vulkanbogen als magmatische Provinz. Tschermaks Min Petr Mitt 4: 301–311

    Google Scholar 

  • Heritsch F (1908) Über einige Einschliisse und vulkanische Bomben von Kapfenstein in Oststeiermark. Zentralbl Min 1908: 209–211

    Google Scholar 

  • Heritsch H (1967) Über die Magmenentfaltung des steirischen Vulkanbogens. Contrib Mineral Petrol 15: 330–344

    Google Scholar 

  • Irvine TN (1967) Chromian spinel as petrogenetical indicator. Part 2. Petrologic applications. Can J Earth Sci 4: 71–103

    Google Scholar 

  • Irving A (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. Am J Sci 280A: 389–426

    Google Scholar 

  • Kurat G (1971) Granat-Spinell-Websterit und Lherzolith aus dem Basalttuff von Kapfenstein, Steiermark. Tschermaks Min Petr Mitt 16: 192–214

    Google Scholar 

  • ——Brandstätter F, Palme H, Spettel B, Prinz M, Touret J (1983) Mobilizations in upper mantle rocks from Zabargad, Red Sea (abstract). Terra cognita 3: 125

    Google Scholar 

  • Embey-Isztin A, Ntaflos Th, Palme H, Touret J, Spettel B, Prinz M (in prep) Petrology and geochemistry of upper mantle rocks from Zabargad Island, Red Sea

  • ——Kracher A, Scharbert HG (1976) Petrologie des oberen Erdmantels unterhalb von Kapfenstein, Steiermark. (Abstract.) Fortschr Miner 55: 70–71

    Google Scholar 

  • —— —— —— (1977) The Earth's upper mantle below Kapfenstein (Eastern Styria, Austria). (Abstract.) Min Soc Bull 34: 6

    Google Scholar 

  • Ntaflos T, Brandstätter F, Palme H, Spettel B, Prinz M, Touret J (1984) Metasomatism of upper mantle rocks from Zabargad Island, Red Sea. Int Geol Congr Moscow, Abstr Vol 10, pp 324–325

  • ——Palme H, Spettel B, Baddenhausen H, Palme C, Wänke H (1980) Geochemistry of ultramafic xenoliths from Kapfenstein, Austria. Evidence for a variety of upper mantle processes. Geochim Cosmochim Acta 44: 45–60

    Google Scholar 

  • Mercier J-C (1980) Single-pyroxene thermobarometry. Tectonophysics 70: 1–37

    Google Scholar 

  • ——Nicolas A (1975) Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16: 454–487

    Google Scholar 

  • Nicolas A, Lucazeau F, Bayer R (1987) Peridotite xenoliths in Massif Central basalts, France: textural and geophysical evidence for astenospheric diapirism. In: Nixon PH (ed) Mantle Xenoliths. J Wiley and Sons, pp 563–574

  • Nixon PH (ed) (1987) Mantle Xenoliths. J. Wiley & Sons, 844pp

  • Norton D (1988) Metasomatism and permeability. Amer J Sci 288: 604–618

    Google Scholar 

  • O'Reilly S, Griffin WL (1987) Eastern Australia-4000 kilometers of mantle samples. In:Nixon PH (ed) Mantle Xenoliths. J Wiley and Sons, pp 267–280

  • Pike JEN, Schwarzmann EC (1977) Classification of textures in ultramafic xenoliths. J Geol 85: 49–61

    Google Scholar 

  • Poultidis H (1981) Petrologie und Geochemie basaltischer Gesteine des steirischen Vulkanbogens in Steiermark und im Burgenland. Univ. Vienna, unpublished thesis, 146pp

  • Reid JB, Woods GA (1978) Oceanic mantle beneath the southern Rio Grande rift. Earth Planet Sci Lett 41: 303–316

    Google Scholar 

  • Richter W (1971) Ariegite, Spinell-Peridotite und Phlogopit-Klinopyroxenite aus dem Tuff von Tobaj im südlichen Burgenland. Tschermaks Min Petr Mitt 16: 227–251

    Google Scholar 

  • Ross CS, Foster MD, Myers AT (1954) Origin of dunites and of olivine-rich inclusions in basaltic rocks. Am Mineral 39: 693–737

    Google Scholar 

  • Ross JV (1983) The nature and rheology of the Cordilleran upper mantle of British Columbia: Inferences from peridotite xenoliths. Tectonophysics 100: 321–357

    Google Scholar 

  • Schadler J (1913) Zur Kenntnis der Einschlüsse in den südsteirischen Basalttuffen und ihrer Mineralien. Tschermaks Min Petr Mitt 32: 485–511

    Google Scholar 

  • Schoklitsch K (1935) Pyrometamorphose an Einschlüssen in Eruptiven am Alpen-Ostrand. Tschermaks Min Petr Mitt 46: 127–152

    Google Scholar 

  • Smith D (1977) The origin and interpretation of spinel-pyroxene in peridotite. J Geol 85: 476–482

    Google Scholar 

  • Stosch HG (1987) Constitution and evolution of subcontinental upper mantle in areas of young volcanism: Differences and similarities between the Eifel (F.R. Germany) and Tariat Depression (central Mongolia) as evidenced by peridotite and granulite xenoliths. Fortschr Miner 65: 49–86

    Google Scholar 

  • Wells P (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62: 129–139

    Google Scholar 

  • Witt G, Seck HA (1987) Temperature history of sheared mantle xenoliths from the West Eifel/West Germany: Evidence for mantle diapirism beneath the Rhenish Massif. J Petrol 28: 475–493

    Google Scholar 

  • —— —— (1989) Origin of amphibole in recrystallized and porphyroclastic mantle xenoliths from the Rhenish Massif: implications for the nature of mantle metasomatism. Earth Planet Sci Lett 91: 327–340

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurat, G., Embey-Isztin, A., Kracher, A. et al. The upper mantle beneath Kapfenstein and the Transdanubian volcanic region, E Austria and W Hungary: A comparison. Mineralogy and Petrology 44, 21–38 (1991). https://doi.org/10.1007/BF01167098

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01167098

Keywords

Navigation