Skip to main content
Log in

Trace elements distribution and mineralogical composition in the < 2-μm size fraction of shales from the Southern Apennines, Italy

Spurenelement-Verteilung und mineralogische Zusammensetzung der < 2μm Fraktion von Schiefern aus dem südlichen Appenin (Italien)

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Mineralogical composition and trace elements distribution in the < 2-μm size fraction of Late Cretaceous-Oligocene shales from the Southern Apennines (Italy) are presented.

The clay mineral assemblage consists of illite, smectite, kaolinite and minor chlorite. Analytical evidence points to a detrital micaceous precursor for illite and smectite. Accessory phases were also found. Chemical data, normalized with respect to the Post-Archean Australian Shales (PAAS), indicate depletion of Ba, Rb, Y, Zr and enrichment of Nb. PAAS-normalized REE-patterns exhibit a positive Eu anomaly and HREE depletion. A kaolinite-rich sample has high ΣREE contents in contrast to smectite-rich fractions. A REE-pattern without appreciable Eu anomaly is displayed by the illite-rich sample.

Statistical data processing indicates a link between Ti, P, Y, Zr, Nb and Yb, suggesting that accessory phases may play a role in controlling HREE and that the observed LREE/HREE fractionation may also be due to hydraulic sorting of these phases. An important La-kaolinite relationship accounts for the capability of this phase to host LREE. Smectite and, thus, adsorption mechanisms, appear to exert a limited role in distributing REE. The Eu anomaly is a source inherited feature, probably not determined solely by clay minerals.

Zusammenfassung

Die mineralogische Zusammensetzung und die Verteilung der Spurenelemente in der < 2 μm Fraktion von spät-kretazischen-oligozänen Schiefern aus dem südlichen Appenin (Italien) werden in Übersicht gebracht. Die Tonmineral-Vergesellschaftung besteht aus Illit, Smectit, Kaolinit und kleineren Mengen von Chlorit. Analytische Daten weisen darauf hin, daß Illit und Smectit aus einem detritischen Glimmermineral hervorgegangen sein dürften. Auch akzessorische Phasen kommen vor. Chemische Daten zeigen gegenüber post-Archaischen australischen Schiefern (PAAS) eine Verarmung in Ba, Rb, Y, Zr und eine Anreicherung von Nb. PAAS-normalisierte SEE-Verteilungsmuster zeigen eine positive Eu Anomalie und eine Verarmung an HSEE. Eine Kaolinit-reiche Probe zeigt hohe Gehalte an gesamten SEE im Gegensatz zu einer Smectit-reichen. Die Illit-reiche Probe zeigt ein SEE-Verteilungsmuster ohne deutliche Eu Anomalie.

Statistische Verarbeitung der Daten läßt eine Verbindung zwischen Ti, P, Y, Zr, Nb und Yb erkennen; dies weist darauf hin, daß akzessorische Phasen einen Einfluß auf die HSEE-Verteilung haben und daß die beobachtete LSEE/HSEE Fraktionierung auch auf hydraulische Sortierung dieser Phasen zurückgehen könnte. Es gibt eine bedeutsame Beziehung zwischen La und Kaolinit und diese unterstreicht die Fähigkeit des Kaolinits für die Aufnahme von LSEE. Smectit und Adsorptionsmechanismen scheinen eine geringe Rolle für die Verteilung der SEE zu spielen. Die Eu Anomalie ist eine Erscheinung, die auf die Quelle der sedimentären Minerale zurückgeht und wahrscheinlich nicht ausschließlich durch Tonminerale bestimmt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bisdom EBA, Stoops G, Delvigne J, Curmi P, Altemuller HJ (1982) Micromorphology of weathered biotite and ils secondary products. Pedology (Belgium) 32: 225–252

    Google Scholar 

  • Bonjour JL, Dabard MP (1991) Ti/Nb ratios of clastic terrigenous sediments used as an indicator of provenance. Chem Geol 91: 257–267

    Google Scholar 

  • Caggianelli A, Fiore S, Mongelli G, Salvemini A (1992) REE distribution in the clay fraction of pelites from the southern Appennines, Italy. Chem Geol 99: 253–263

    Google Scholar 

  • Cantrell KJ, Byrne RH (1987) Rare earth element complexation by carbonate and oxalate ions. Geochim Cosmochim Acta 51: 597–606

    Google Scholar 

  • Condie KC (1991) Another look at rare earth elements in shales. Geochim Cosmochim Acta 55: 2527–2531

    Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104: 1–37

    Google Scholar 

  • Courtois C, Chamley H (1978) Terres rares et minéraux argileux dans le Crétace et le Cénozoïque de la marge atlantique orientale. C R Acad Sc Paris t 286: 671–674

    Google Scholar 

  • Cullers RL, Chaudhuri S, Arnold B, Lee M, Wolf CW Jr (1975) Rare earth distributions in clay minerals and in the clay-sized fraction of the Lower Permian Havensville and Eskridge shales of Kansas and Oklahoma. Geochim Cosmochim Acta 39: 1691–1703

    Google Scholar 

  • Cullers RL, Chaudhuri S, Kilbane N, Koch R (1979) Rare earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the U.S.A. Geochim Cosmochim Acta 43: 1285–1301

    Google Scholar 

  • Elderfield E, Upstill-Goddard R, Sholkovitz ER (1990) The rare earth elements in rivers, estuaries, and coastal seas and their significance to thé composition of ocean waters. Geochim Cosmochim Acta 54: 971–991

    Google Scholar 

  • Fiore S, Mongelli G (1991) Hypothesis on the genesis of clay minerals in the fine fraction of “Argille varicolori” from Andretta (southern Apennines). Mineral Petrogr Acta 34: 181–188

    Google Scholar 

  • Franzini M, Leoni L, Saitta M (1972) A simple method to evaluate the matrix effects in X-ray fluorescence analysis. X-ray Spectrom 1: 151–154

    Google Scholar 

  • Franzini M, Leoni L, Saitta M (1975) Revisione di una metodologia analitica per fluorescenza X basata sulla correzione degli effetti di matrice. Boll Soc Ital Mineral Petrol 31: 365–378

    Google Scholar 

  • Fujimaki H (1986) Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contrib Mineral Petrol 94: 42–45

    Google Scholar 

  • Gorbunov NI, Gradusov BP (1966) Methods of determining fine-grained minerals. Soviet Soil Sei 16: 712–725

    Google Scholar 

  • Govindaraju K, Mevelle G (1987) Fully automated dissolution and separation methods for inductively coupled plasma atomic emission spectrometry rock analysis-Application to the determination of REE. J Anal Atom Spectrom 2: 615–621

    Google Scholar 

  • Henderson P, Pankhurst RJ (1984) Analytical chemistry. In:Henderson P (ed) Rare earth element geochemistry. Developments in geochemistry 2. Elsevier, Amsterdam, 510 pp

    Google Scholar 

  • Jarvis I, Jarvis KE (1992) Plasma spectrometry in the earth sciences: techniques, applications and future trends. Chem Geol 95: 1–33

    Google Scholar 

  • Laviano R (1987) Analisi mineralogica quantitativa di argilee mediante diffrattometria di raggi X. In: Procedure di analisi di materiali argillosi. Collanan di studi ambientali Ente Nazionale Energie Alternative, pp 215–234

  • Leoni L, Saitta M (1976) Determination of Yttrium and Niobium on standard silicate rocks by X-ray fluorescence analysis. X-ray Spectrom 5: 29–30

    Google Scholar 

  • Lim CH, Jackson ML, Koons RD, Helmke PA (1980) Kaolins: sources of differences in cation exchange capacities and cesium retention. Clays Clay miner 28: 223–229

    Google Scholar 

  • Lucas J (1963) La transformation des miéraux argileux dans la sedimentation. Etudes sur les argiles du Trias. Mem Carte Geol Als Lorr 23: 202

    Google Scholar 

  • Manfredini M (1986) Explanatory notes on the schematical geological map of Southern Italy between 40° and 41°21' lat. North. Geol Appl e Idrogeol XXI: 83–133

    Google Scholar 

  • Nesbitt HW (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature (London) 279: 206–210

    Google Scholar 

  • Pescatore T, Renda P, Tramutoli M (1988) Rapporti tra le Unità Lagonegresi e le Unità Sicilidi nella media valle del Basento. Atti 74° Congr Soc Geol It A: 445–450

    Google Scholar 

  • Prudencio MJ, Figueiredo M0, Cabral JMP (1989) Rare earth distribution and its correlation with clay mineralogy in the clay-sized fraction of cretaceous and Pliocene sediments (central Portugal). Clay Miner 24: 67–74

    Google Scholar 

  • Roaldset E (1973) REE in quaternary clays of the Numedal area, southern Norway. Lithos 6: 349–372

    Google Scholar 

  • Roelandt I, Deblond A (1992) Rare-earth element composition of Devonian sediments from southern Belgium: application of an inductively coupled plasma-atomic emission spectrometry method. Chem Geol 95: 167–176

    Google Scholar 

  • Ruiz Cruz MD, Linares J (1992) Geochemical analysis of sediments from the Campo de Gibraltar area (S Spain). Miner Petrogr Acta XXXV-A: 67–77

    Google Scholar 

  • Scandone P (1967) Studi di geologia lucana: la serie calcareo-silico-marnosa e i suoi rapporti con l'Appennino Calcareo. Boll Soc Nat Napoli 76: 311–316

    Google Scholar 

  • Scandone P (1972) Studi di geologia lucana: carta dei terreni della serie calcareo-silico-marnosa. Boll Soc Nat Napoli 81: 225–300

    Google Scholar 

  • Schultz LG (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. US Geol Surv Prof Pap 391-C: 1–31

    Google Scholar 

  • Shaw DB, Stevenson RG, Weaver CE, Bradley WF (1971) Interpretation of X-ray diffraction data. In:Carver RE (ed) Procedures in sedimentary petrology. Wiley, New York, pp 554–557

    Google Scholar 

  • Shaw DB, Stevenson RG, Weaver CE, Bradley WF (1971) Interpretation of X-ray diffraction data. In:Carver RE (ed) Procedures in sedimentary petrology. Wiley, New York, pp 554–557

    Google Scholar 

  • Sholkovitz ER (1990) Rare-earth elements in marine sediments and geochemical standards. Chem Geol 88: 333–347

    Google Scholar 

  • Sverjensky DA (1984) Europium redox equilibria in aqueous solution. Earth Planet Sci Lett 67: 70–78

    Google Scholar 

  • Tarzi JG, Protz R (1978) Characterization of morphological features of soil micas using scanning electron microscopy. Clays and Clay Min 26: 352–360

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, 312 pp

    Google Scholar 

  • Thorez J (1976) Practical identification of clay minerals. Editions G Lelotte, Belgium

    Google Scholar 

  • Totland M, Jarvis I, Jarvis KE (1992) An assessment of dissolution techniques for the analysis of geological samples by plasma spectrometry. Chem Geol 95: 35–62

    Google Scholar 

  • Walsh JN, Howie RA (1980) An evaluation of the performance of an inductively coupled plasma source spectrometer for the determination of the major and trace constituents of silicate rocks and minerals. Mineral Mag 43: 967–974

    Google Scholar 

  • Weaver CE (1989) Clays, muds and shales. Elsevier, Amsterdam, 819 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mongelli, G. Trace elements distribution and mineralogical composition in the < 2-μm size fraction of shales from the Southern Apennines, Italy. Mineralogy and Petrology 53, 103–114 (1995). https://doi.org/10.1007/BF01171949

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01171949

Keywords

Navigation