Skip to main content
Log in

Sulphide minerals in early Archean chemical sedimentary rocks of the eastern Pilbara district, Western Australia

Sulfide in chemischen sedimentgesteinen des älteren Archaikums im östlichen Pilbara block, Westaustralien

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The occurrence and paragenesis of sulphide minerals in chemical sedimentary rocks from the McPhee and the Towers Formations of the Warrawoona Group, eastern Pilbara Craton were examined, in order to evaluate the Archean sedimentary environment. The chemical sedimentary facies of both formations are comprised of chert or chertcarbonate units, which are highly depleted in detrital materials. The cherty rocks are mostly composed of microcrystalline quartz, containing significant types of syndepositional (or diagenetic) sulphide minerals. In particular, the cherty rocks in the Towers Formation (North Pole Chert, Marble Bar Chert) include primary sulphide minerals, such as pyrite, chalcopyrite, sphalerite, monoclinic pyrrhotite, pentlandite, gersdorffite and millerite. This assemblage and the measured FeS content (8.4–10.4 mol%) of sphalerite associated with the Fe-sulphide minerals suggest that the cherty rocks were formed under reducing conditions at temperatures below 200°C (about 150°C), and also that the metamorphic temperature of the rocks was less than 325 °C. Furthermore, the virtual absence of detrital materials and the minor element compositions imply that the cherty rocks of the eastern Pilbara Block were formed by rapid precipitation from reducing hydrothermal solutions.

Zusammenfassung

Das Auftreten und die Paragenese von Sulfiden in chemischen Sedimentgesteinen der McPhee und der Towers Formation der Warrawoona Gruppe, östlicher Pilbara Block, wurden untersucht, um das sedimentäre Milieu im Archaikum besser abschätzen zu können. Die chemisch-sedimentäre Fazies beider Formationen besteht aus Chert- oder Chert-Karbonat-Einheiten, die hochgradig an detritärem Material verarmt sind. Die Cherts bestehen aus mikrokristallinem Quartz, der beträchtliche Mengen an syngenetischen bzw. syndiagenetischen Sulfiden enthält. Vor allem die Cherts der Towers Formation (North Pole Chert, Marble Bar Chert) führen Pyrit, Kupferkies, Zinkblende, monoklinen Magnetkies, Pentlandit, Gersdorffit und Millerit als primäre Sulfide. Diese Vergesellschaftung und die gemessenen FeS-Gehalte der mit den Fe-Sulfiden assoziierten Zinkblende (8.4–10.4 Mol%), weisen darauf hin, daß die Cherts unter reduzierenden Bedingungen bei Temperaturen unter 200°C entstanden sind und daß die Matamorphosetemperatur 325 °C nicht überschritten hat. Das Fehlen detritärer Sedimentkomponenten und die Spurenelementzusammensetzungen lassen darauf schließen, daß die Cherts im östlichen Pilbara Block durch rasche Ausfällung aus reduzierenden hydrothermalen Lösungen entstanden sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barley ME (1993) Volcanic, sedimentary and tectonostratigraphic environments of the ∼ 3.46 Ga Warrawoona Megasequence: a review. Precamb Res 60: 47–67

    Google Scholar 

  • Barley ME, Dunlop JSR, Glover JE, Groves DI (1979) Sedimentary evidence for an Archaean shallow-water volcanic-sedimentary facies, Eastern Pilbara-Block, Western Australia. Earth Planet Sci Lett 43: 74–84

    Google Scholar 

  • Barley ME, Sylvester GC, Groves DI (1984) Archaean calc-alkaline volcanism in the Pilbara Block. Precamb Res 24: 285–319

    Google Scholar 

  • Barley ME, Groves DI, Blake TS (1992) Archean metal deposits related to tectonics: evidence from western Australia. In:Glover JE, Ho SE (eds) The Archean: terrains, processes and metallogeny. Geology Department and University Extension, Univ Western Australia Pub 22, pp 307–324

  • Barnes HL (1979) Solubility of ore minerals. In:Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd ed. Wiley-Interscience, New York, pp 404–460

    Google Scholar 

  • Barton PB Jr, Skinner BJ (1979) Sulfide mineral stabilities. In:Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd ed. Wiley-Interscience, New York, pp 378–403

    Google Scholar 

  • Bau M, Möller P (1993) Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system. Geochim Cosmochim Acta 57: 2239–2249

    Google Scholar 

  • Browne PRL, Lovering JF (1973) Composition of sphalerites from the Broadlands geothermal field and their significance to sphalerite geothermometry and geobarometry. Econ Geol 68: 381–387

    Google Scholar 

  • Buick R, Dunlop JSR (1990) Evaporitic sediments of Early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentalogy 37: 247–277

    Google Scholar 

  • Buick R, Thornett JR, McNaughton NJ, Smith JB, Barley ME, Savage M (1995) Record of emergent continental crust ∼ 3.5 billion years ago in the Pilbara craton of Australia. Nature 375: 574–577

    Google Scholar 

  • Craig JR (1973) Pyrite-pentlandite assemblage and other low temperature relations in the Fe-Ni-S system. Am J Sci 273-A: 496–510

    Google Scholar 

  • Derry LA, Jacobsen SB (1990) The chemical evolution of Precambrian seawater: evidence from REEs in banded iron formations. Geochim Cosmochim Acta 54: 2965–2977

    Google Scholar 

  • DiMarco MJ, Lowe DR (1989) Stratigraphy and sedimentology of an early Archean felsic volcanic sequence, Eastern Pilbara Block, Western Australia, with special reference to the Duffer Formation and implications for crustal evolution. Precamb Res 44: 147–169

    Google Scholar 

  • Fritz P, Drimmie RJ, Nowicki VK (1974) Preparation of sulfur dioxide for mass spectrometer analyses by combustion of sulfides with copper oxide. Anal Chem 46: 164–166

    Google Scholar 

  • Fujimaki H, Aoki K (1987) Determination of trace elements in rock samples by X-ray fluorescence. J Jpn Assoc Mineral Petrol Econ Geol 82: 411–414

    Google Scholar 

  • Hein JR, Vallier TL, Allan MA (1981) Chert petrology and geochemistry, Mid-Pacific Mountains and Hess Rise, Deep Sea Drilling Project. In:Thiede TL et al. (eds) Initial reports of the Deep Sea Drilling Project 62. U.S. Government Printing Office, Washington DC, pp 711–748

    Google Scholar 

  • Hickman AH (1983) Geology of the Pilbara Block and its environs. Western Australia Geological Survey Mineral Resource Bulltin 127, 128 pp

  • Hickman AH (1990) Geology of the Pilbara Craton. In:Ho SE, Glover JE, Myers JS, Muhling JR (eds) Extended Abstracts, Third International Archaean Symposium, Perth, 1990. Geology Department and University Extension, Univ Western Australia Pub 21, pp 2–57

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, 582 pp

    Google Scholar 

  • Humphris SE, Thompson G (1978) Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim Cosmochim Acta 42: 127–136

    Google Scholar 

  • Isley AE (1995) Hydrothermal plumes and the delivery of iron to banded iron formation. J Geol 103: 169–185

    Google Scholar 

  • Kalogeropoulos SI, Scott SD (1983) Mineralogy and geochemistry of tuffaceous exhalites (Tetsusekiei) of the Fukazawa mine, Hokuroku district, Japan. Econ Geol Mon 5, pp 412–432

    Google Scholar 

  • Kiba T, Takagi T, Yoshimura Y, Kishi I (1955) Tin (II)-strong phosphoric acid. A new reagent for the determination of sulfate by reduction to hydrogen sulfide. Bull Chem Soc Japan 28: 641–644

    Google Scholar 

  • Kissin SA, Scott SD (1982) Phase relations involving pyrrhotite below 350°C. Econ Geol 77: 1739–1754

    Google Scholar 

  • Köppel VH, Saager R (1974) Lead isotope evidence on the detrital origin of Witwatersrand pyrites and its bearing on the provenance of the Witwatersrand gold. Econ Geol 69: 318–331

    Google Scholar 

  • Krapez B (1993) Sequence stratigraphy of the Archaean supracrustal-belts of the Pilbara Block, Western Australia. Precamb Res 60: 1–45

    Google Scholar 

  • Lambert IB, Donnelly TH, Dunlop JSR, Groves DI (1978) Stable isotope compositions of early Archean sulphate deposits of probable evaporitic and volcanogenic origin. Nature 276: 808–811

    Google Scholar 

  • Lebedev LM, Cherkashev GA, Tsepin AI (1988) New data on the mineralogy of sulfide muds from the Atlantis II Deep, Red Sea. Dokl Akad Nauk SSSR 301: 1186–1190 (in Russian)

    Google Scholar 

  • Lowe DR (1980) Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature 284: 441–443

    Google Scholar 

  • Lowe DR (1983) Restricted shallow-water sedimentation of Early Archean stromatolitic and evaporitic strata of the Strelley Pool chert, Pilbara Block Western Australia. Precamb Res 19: 239–283

    Google Scholar 

  • Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22: 387–390

    Google Scholar 

  • MacLean PJ, Fleet ME (1989) Detrital pyrite in the of the Witwatersrand gold fields of South Africa: evidence from truncated banding. Econ Geol 84: 2008–2011

    Google Scholar 

  • McNaughton NJ, Compson W, Barley ME (1993) Constraints on the age of the Warrawoona Group, eastern Pilbara Block, Western Australia. Precamb Res 60: 69–98

    Google Scholar 

  • Morris RC (1993) Genetic modelling for'banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precamb Res 60: 243–286

    Google Scholar 

  • Mottl MJ, Holland HD, Corr R (1979) Chemical exchange during hydrothermal alteration of basalt by seawater, II. Experimental results for Fe, Mn, and sulfur species. Geochim Cosmochim Acta 43: 869–884

    Google Scholar 

  • Ohta I, Kato Y, Isozaki Y, Maruyama S, Shikazono N, Watanabe Y (1993) Banded iron formations of the Cleaverville areas (3.3 Ga) in the Pilbara Craton, Western Australia (Abstr). Resource Geol 43: 229

    Google Scholar 

  • Robinson BW, Kusakabe M (1975) Quantitative preparation of sulfur dioxide for34S/32S analyses from sulfides by combustion with cuprous oxide. Anal Chem 47: 1179–1181

    Google Scholar 

  • Schopf JW (1993) Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science 260: 640–646

    Google Scholar 

  • Scott SD (974) Experimental methods in sulfide synthesis. In:Ribbe PH (ed) Sulfide mineralogy. Reviews in mineralogy 1. Mineralogical Society of America, S1–S38

  • Scott SD, Kissin SA (1973) Sphalerite composition in the Zn-Fe-S system below 300°C. Econ Geol 68: 475–479

    Google Scholar 

  • Seyfried W, Mottl MJ (1982) Hydrothermal alteration of basalt by seawater under seawater dominated conditions. Geochim Cosmochim Acta 46: 985–1002

    Google Scholar 

  • Sugaki A, Kitakaze A, Ueno T (1982) Hydrothermal syntheses of minerals in the system Cu-Fe-S and their phase equilibrium at 400 and 500°C. Jpn Assoc Mineral Petrol Econ Geol, Spec Issue 3, pp 257–269 (in Japanese with English abstract)

    Google Scholar 

  • Sugitani K (1992) Geochemical characteristics of Archean cherts and other sedimentary rocks in the Pilbara Block, Western Australia: evidence for Archean seawater enriched in hydrothermally derived iron and silica. Precamb Res 57: 21–47

    Google Scholar 

  • Thorpe RI, Hickman AH, Davis DW, Mortensen JK, Trendall AF (1992) U-Pb geochronology of Archaean felsic units in the Marble Bar region, Pilbara Craton, Western Australia. Precamb Res 56: 169–189

    Google Scholar 

  • Von Damn KL, Edmond JM, Grant B, Measures CI, Walden B, Weiss RF (1985) Chemistry of submarine hydrothermal solutions at 21 °N, East Pacific Rise. Geochim Cosmochim Acta 49: 2197–2220

    Google Scholar 

  • Walter MR, Buick R, Dunlop JSR (1980) Stromatolites 3,400-3,500 Myr old from the North Pole area, Western Australia. Nature 284: 443–445

    Google Scholar 

  • Yamamoto K (1983) Geochemical study of Triassic bedded cherts from Kamiaso, Gifu Prefecture. J Geol Soc Jpn 89: 143–162 (in Japanese with English abstract)

    Google Scholar 

  • Yamamoto K (1987) Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sedimentary Geol 52: 65–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kojima, S., Hanamuro, T., Hayashi, K. et al. Sulphide minerals in early Archean chemical sedimentary rocks of the eastern Pilbara district, Western Australia. Mineralogy and Petrology 64, 219–235 (1998). https://doi.org/10.1007/BF01226570

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01226570

Keywords

Navigation