Skip to main content
Log in

Myocardial substrate utilization and hemodynamics following repeated coronary flow reduction in pigs

Myokardialer Substratverbrauch und Hämodynamik während wiederholter Reduktion der Koronardurchströmung in Schweinen

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The effect of repeated local ischemia and reperfusion on myocardial metabolism and ventricular performance was studied in 12 open-chested pigs fasted overnight. Myocardial ischemia was induced by reduction of the flow in the left anterior descending coronary artery to 40% of control during 30 min. After 35 min of reperfusion a second 30-min occlusion period was started, again followed by a 35-min reperfusion period. At the end of both reperfusion periods coronary flow and coronary resistance had returned to control values. During control there was lactate uptake, but no significant uptake of glucose, free fatty acids (FFA), triglycerides, glycerol and inosine. During the first occlusion period the heart released lactate and inosine, and used glucose and FFA. At the end of the first reperfusion period lactate uptake approached control values, but inosine was still released by 10 of the 12 animals. In the second ischemic period, glucose and FFA were again taken up. Lactate and inosine were released, but the production was much smaller than during the first occlusion period. Depletion of myocardial glycogen and high-energy phosphates could be responsible for this quantitatively different response. Necrosis may have played a role, although enzyme release was minimal and only observed after the second occlusion period.

Heart rate, peripheral resistance and ventricular filling pressure were virtually unchanged throughout the course of the experiments. Maximum rate of fall of left ventricular pressure (min LVdP/dt) decreased during ischemia and did not recover during reperfusion. Changes in min LVdP/dt and cardiac output were more closely related than changes in max LVdP/dt and cardiac output.

This model cannot be used for the study of interventions during myocardial ischemia in which the animal serves as its own control.

Zusammenfassung

Der Effekt von wiederholter lokaler Ischämie und Reperfusion auf den myokardialen Energiestoffwechsel und Ventrikelfunktion wurde bei 12 narkotisierten Schweinen mit geöffnetem Thorax studiert. Die Schweine hatten 24 Stunden gefastet. Die myokardiale Ischämie wurde verursacht durch eine Reduktion der Blutdurchströmung in der linken Anterior Descending Koronar Arterie bis 40% vom Anfangswert während 30 Minuten. Eine zweite Reduktion wurde nach 35 Minuten Reperfusion angefangen. Die zweite Reduktion folgte wieder durch eine 35 Minuten dauernde Reperfusion. Am Ende der beiden Reperfusionen der Koronardurchströmung und Koronarwiderstand hatten sie wieder Anfangswerte angenommen. Während der Kontrolle gab es Laktat-Aufnahme, aber keine Aufnahme von Glukose, Freie Fettsäure (FFA), Triglyzeride, Glyzerol und Inosine. Während der ersten Okklusions-Periode wurde aus dem Herzen Lactat und Inosine freigemacht, es wurde Glukose und FFA aufgenommen. Am Ende der ersten Reperfusion wurde Laktat wieder aufgenommen, aber Inosine wurde noch immer an 10 von 12 Schweinen freigemacht. In der zweiten Okklusions-Periode gab es wieder Glukose und FFA-Aufnahme. Laktat und Inosine wurden freigemacht, aber die Produktion war viel kleiner als in der ersten Okklusions-Periode. Erschöpfung von myokardialen Glykogen und energiereichen Phosphaten können dafür verantwortlich sein. Nekrose könnte auch eine Rolle gespielt haben, obschon Enzym-Abgaben sehr gering waren und nur nach der zweiten Okklusions-Periode gefunden wurden. Herzfrequenz, Peripherewiderstand und ventrikulärer Füllungsdruck blieben so gut wie unverändert. Während der Experimente wurde die maximale Druckabfallgeschwindigkeit (minLVdP/dt) weniger, während Ischämie sich bei Reperfusion nicht herstellte. Veränderungen in minLVdP/dt und Herzminutenvolumen hatten einen höheren Korrelations-Koeffizient, als maxLVdP/dt und Herzminutenvolumen. Dieses Modell kann nicht für die Studien von Interventionen während myokardialer Ischämie benutzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Althaus, U., H. P. Gurtner, H. Baur, S. Hamburger, B. Roos: Consequences of myocardial reperfusion following temporary coronary occlusion in pigs: effects on morphologic, biochemical and haemodynamic findings. Europ. Clinical Investigation7, 437–443 (1977).

    Google Scholar 

  2. Apstein, C. S., E. Puchner, N. Brachfeld: Improved automated lactate determination. Analytical Biochemistry38, 20–34 (1970).

    PubMed  Google Scholar 

  3. Bergmeyer, H. U., (Ed.): Methoden der enzymatischen Analyse, 2nd edit. (Weinheim 1970).

  4. Bertho, E., Gagnon, G. A.: A comparative study in three dimensions of the blood supply of the normal interventricular septum in human, canine, bovine, porcine, ovine and equine heart. Diseases of the Chest46, 251–262 (1964).

    PubMed  Google Scholar 

  5. Blumenthal, M. R., H. H. Wang, L. M. P. Liu: Experimental coronary arterial occlusion and release. The Amer. J. Cardiol.36, 225–233 (1975).

    Google Scholar 

  6. Brachfeld, N.: Characterization of the ischemic process by regional metabolism. The Amer. J. Cardiol.37, 467–473 (1976).

    Google Scholar 

  7. Brooks, H., J. Al-Sadir, J. Schwartz, B. Rich, P. Harper, L. Resnekov: Biventricular dynamics during quantitated anteroseptal infarction in the porcine heart. The Amer. J. Cardiol.36, 765–775 (1975).

    Google Scholar 

  8. Capone, R. J., A. S. Most: Myocardial hemorrhages after coronary reperfusion in pigs. The Amer. J. Cardiol.41, 259–266 (1978).

    Google Scholar 

  9. Cohn, P. F., A. J. Liedtke, J. Serur, E. H. Sonnenblick, C. W. Urschel: Maximal rate of pressure fall (peak negative dP/dt) during ventricular relaxation. Cardiovascular Research6, 263–267 (1972).

    PubMed  Google Scholar 

  10. De Jong, J. W., P. D. Verdouw, W. J. Remme: Myocardial nucleoside and carbohydrate metabolism and hemodynamics during partial occlusion and reperfusion of pig coronary artery. J. Molecular and Cellular Cardiol.9, 297–312 (1977).

    Google Scholar 

  11. De Jong, J. W., S. Goldstein: Changes in coronary venous inosine concentration and myocardial wall thickening during regional ischemia in the pig. Circulation Research35, 111–116 (1974).

    PubMed  Google Scholar 

  12. De Jong, J. W., P. D. Verdouw, W. J. Remme: Myocardial metabolism during repeated coronary flow reduction and reperfusion. Transactions the Europ. Society Cardiol.1, 22 (1978).

    Google Scholar 

  13. Eckstein, R. W.: Coronary interarterial anastomoses in young pigs and mongrel dogs. Circulation Research2, 460–465 (1954).

    PubMed  Google Scholar 

  14. Gregg, D. E.: The natural history of coronary collateral development. Circulation Research35, 335–344 (1974).

    PubMed  Google Scholar 

  15. Heyndrickx, G. R., R. W. Millard, R. J. McRitchie, P. R. Maroko, S. F. Vatner: Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. The J. Clinical. Investigation56, 978–985 (1975).

    Google Scholar 

  16. Hirsche, M., W. Lochner: Über den Stoffwechsel des Herzens bei vermehrtem Milchsäure-Angebot. In Verh. der Dtsch. Ges. Kreislaufforschg. (27th meeting), p. 207.R. Trauer, Ed. (Darmstadt 1961).

  17. Ichihara, K., Y. Abiko: Difference between endocardial and epicardial utilization of glycogen in the ischemic heart. Amer. J. Physiol.229, 1585–1589 (1975).

    PubMed  Google Scholar 

  18. Jarmakani, J. M., L. Limbird, T. C. Graham, R. A. Marks: Effect of reperfusion on myocardial infarct, and the accuracy of estimating infarct size from serum creatine phosphokinase in the dog. Cardiovascular Research10, 245–253 (1976).

    PubMed  Google Scholar 

  19. Lang, T. W., E. Corday, H. Gold, S. Meerbaum, S. Rubins, C. Constantini S. Hirose, J. Osher, V. Rosen: Consequences of reperfusion after coronary occlusion-effects on hemodynamic and regional myocardial metabolic function. The Amer. J. Cardiol.33, 69–81 (1974).

    Google Scholar 

  20. Liedtke, A. J., H. C. Hughes, J. R. Neely: Metabolic responses to varying restrictions of coronary blood flow in swine. Amer. J. Physiol.228, 655–662 (1975).

    PubMed  Google Scholar 

  21. Maroko, P. R., P. Libby, W. R. Ginks, C. M. Bloor, W. E. Shell, B. E. Sobel, J. Ross Jr.: Coronary artery reperfusion. I: Early effects on local myocardial function and the extent of myocardial necrosis. J. Clinical Investigation51, 2710–2716 (1972).

    Google Scholar 

  22. Merin, R. G. P. D. Verdouw, J. W. de Jong: Cardiodynamic and metabolic effects of myocardial ischemia during halothane and fentanyl anesthesia in piglets. Abstracts Scientific Papers, Annual Meeting American Society Anesthesiology (New Orleans 1977).

  23. Most, A. S., R. J. Capone, P. A. Mastrofrancesco: Free fatty acids and arrhythmias following acute coronary artery occlusion in pigs. Cardiovascular Research11, 198–205 (1977).

    PubMed  Google Scholar 

  24. Olsson, R. A.: Changes in content of purine nucleoside in canine myocardium during coronary occlusion. Circulation Research26, 301–306 (1970).

    PubMed  Google Scholar 

  25. Puri, P. S.: Contractile and biochemical effects of coronary reperfusion after extended periods of coronary occlusion. The Amer. J. Cardiol.36, 244–251.

  26. Ramanathan, K. B., S. Raina, V. S. Banka, M. M. Bodenheimer, R. H. Helfant: Effects of reperfusion on the regional contraction of ischemic and nonischemic myocardium following partial coronary obstruction. Circulation57, 47–52 (1978).

    PubMed  Google Scholar 

  27. Rovetto, M. J., W. F. Lamberton, J. R. Neely: Mechanisms of glycolytic inhibition in ischemic rat hearts. Circulation Research37, 742–751 (1975).

    PubMed  Google Scholar 

  28. Schaper W.: The collateral circulation of the heart. In Clinical Studies, Vol. 1.D. A. K. Black, Ed. (Amsterdam 1971).

  29. Schaper, W.: Fundamentals of coronary therapy. Medikon4, 33–38 (1975).

    Google Scholar 

  30. Schrader, J., E. Gerlach: Compartmentation of cardiac adenine nucleotides and formation of adenosine. Pflügers Archiv Europ. J. Physiol.367, 129–135 (1976).

    Google Scholar 

  31. Skinner, J. E., J. T. Lie, M. L. Entman: Modification of ventricular fibrillation latency following coronary artery occlusion in the conscious pig. Circulation51, 656–667 (1975).

    PubMed  Google Scholar 

  32. Steenbergen, C., G. Deleeuw, J. R. Williamson: Analysis of control of glycolysis in ischemic hearts having heterogeneous zones of anoxia. J. Molecular and Cellular Cardiol.10, 617–639 (1978).

    Google Scholar 

  33. Trout, D. L., E. H. Estes, S. J. Friedberg: Titration of free fatty acids of plasma: A study of current methods and a new modification. J. Lipid Research1, 199–202 (1960).

    Google Scholar 

  34. Verdouw, P. D., W. J. Remme, P. G. Hugenholtz: Cardiovascular and antiarrhythmic effects of aprindine (AC1802) during partial occlusion of a coronary artery in the pig. Cardiovascular Research11, 317–323 (1977).

    PubMed  Google Scholar 

  35. Verdouw, P. D. J. W. de Jong, R. g. Merin, H. C. Schamhardt: Influence of different anesthetics on myocardial performance and metabolism. J. Molecular and Cellular Cardiol. Suppl.9, 60 (1977).

    Google Scholar 

  36. Verdouw, P. D., H. C. Schamhardt, W. J. Remme, J. W. de Jong: Antiarrhythmic, metabolic, and hemodynamic effects of Org 6001 (3α-amino-5α-androstan-2β-ol-17-one-hydrochloride) after coronary flow reduction in pigs. The J. Pharmacology and Experimental Therapeutics204, 634–644 (1978).

    Google Scholar 

  37. Watanabe, T., F. Shintani, L. F. Fu, K. Kato Maximal rate of the left ventricular pressure fall (peak negative dP/dt) in early stage of myocardial ischemia following experimental coronary occlusion. Japanese Heart J.16, 583–591 (1975).

    Google Scholar 

  38. Waters, D. D., P. da Luz, H. L. Wyatt, H. J. C. Swan, J. S. Forrester: Early changes in regional and global left ventricular function induced by graded reductions in regional coronary perfusion. The Amer. J. Cardiol.39, 537–543 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 figures and 2 tables

This investigation was supported by a grant from the Dutch Heart Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdouw, P.D., Remme, W.J., de Jong, J.W. et al. Myocardial substrate utilization and hemodynamics following repeated coronary flow reduction in pigs. Basic Res Cardiol 74, 477–493 (1979). https://doi.org/10.1007/BF01907642

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907642

Keywords

Navigation