Skip to main content
Log in

Domain structure and viscoelastic properties of graft copolymer

II. Mechanical relaxation behavior of a graft copolymer of poly(methyl acrylate) with styrene

  • Originalarbeiten
  • Polymere
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

The viscoelastic properties of a series of graft copolymers of poly(methyl acrylate) with styrene differing in the degree of grafting and, consequently, in the heterogeneous structure, were investigated in terms of the relaxation modulus function in a range from glassy to rubber flow consistencies.

The relaxation behavior of the corresponding homopolymers was first analyzed in terms of the four different relaxation mechanisms; localized relaxation mechanism associated with the secondary glass transition, two types of intra-molecular relaxation mechanisms due to cooperative thermal diffusion of chain segments in short and long ranges, respectively, both associated with the primary glass-rubber transition, and inter-molecular relaxation mechanisms due to also the cooperative thermal diffusion of chain segments but in further long range including the so-called chain entanglements.

The relaxation behavior of the heterogeneous system of the graft copolymers was then analyzed on the bases of the homogeneous strain hypothesis for the system as well as of the four different relaxation mechanisms for both of the two components. Two types of additional relaxation mechanisms associated with the grain boundary phenomena and with the flow of entire graft copolymer chains after melting (disintegration) of the domain structures, respectively, were investigated as characteristics of the system.

Zusammenfassung

Die viskoelastischen Eigenschaften einer Reihe von Pfropf-Kopolymeren von Polymethylacrylat mit Styrol, die sich im Grad der Pfropfung und damit folgerichtig in der heterogenen Struktur unterscheiden, wurden mit der mechanischen Relaxation im Bereich von Glas-bis zum Gummi-Verhalten untersucht.

Das Relaxationsverhalten der entsprechenden Homopolymeren war zuvor in Form von 4 verschiedenen Relaxationsmechanismen festgelegt worden; lokalisierte Relaxation verknüpft mit dem sek. Glasübergang, zwei Arten von intramolekularer Relaxation entsprechend kooperativer thermischer Diffusion von Kettensegmenten im Kurz- und Langbereich, beide verknüpft mit dem prim. Glas-Gummi-Übergang und zwischen-molekularer Relaxation, ebenfalls aufgrund kooperativer thermischer Bewegung von Kettensegmenten, aber über weite Bereiche einschl. der sog. Kettenverhakungen.

Das Relaxationsverhalten des heterogenen Systems der Pfropf-Kopolymeren wurde auf Grundlage einer homogenen Spannung sowohl für das System als für die 4 verschiedenen Relaxationsmechanismen der bei-den Komponenten analysiert.

Es traten zwei Typen von zusätzlichen Relaxations-mechanismen auf, die mit Grenzflächenphänomenen und mit dem Fließen ganzer Pfropfketten (Abbau) in Domänen-Strukturen zusammenhängen, sie wurden als charakteristisch für das System betrachtet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchdahl, R. andL. E. Nielsen, J. Polymer Sci.15, 1 (1955).

    Google Scholar 

  2. Jenkel, E. andH. U. Herwig, Kolloid-Z.148, 57 (1956).

    Google Scholar 

  3. Tobolsky, A. V., Properties and Structure of Polymers, pp. 78–83 (New York 1960).

  4. Ferry, J. D., Viscoelastic Properties of Polymers, pp. 270–275 (New York 1961).

  5. Nielsen, L. E., Mechanical Properties of Polymers, pp. 172–177 (New York 1963).

  6. Takayanagi, M., H. Harima, andY. Iwata, Mem. Fac. Eng. Kyushu Univ.23, 1 (1963).

    Google Scholar 

  7. Fujino, K., Y. Ogawa, andH. Kawai, J. Appl. Polymer Sci.8, 2147 (1964).

    Google Scholar 

  8. Horino, T., Y. Ogawa, T. Soen, andH. Kawai, J. Appl. Polymer Sci.9, 2261 (1965).

    Google Scholar 

  9. Manabe, S., S. Uemura, andM. Takayanagi, Kogyo Kagaku Zasshi70, 525, 529 (1967).

    Google Scholar 

  10. Kato, K., Polymer Eng. Sci.7, 38 (1967).

    Google Scholar 

  11. Hendus, H., K.-H. Illers, andE. Ropte, Kolloid-Z. u. Z. Polymere216–217, 110 (1967).

    Google Scholar 

  12. Inoue, T., T. Soen, H. Kawai, M. Fukatsu, andM. Kurata, J. Polymer Sci., Part B,6, 75 (1968).

    Google Scholar 

  13. Matsuo, M., S. Sagae, andH. Asai, Polymer (London)10, 79 (1969).

    Google Scholar 

  14. Bradford, E. B. andE. Vanzo, J. Polymer Sci. A-1,6, 1661 (1968).

    Google Scholar 

  15. Skoulios, A. E., G. Tsoulage, andE. Fanta, J. Polymer Sci. Part C,4, 507 (1963).

    Google Scholar 

  16. Angelo, R. J., R. M. Ikeda, andM. L. Wallach, Polymer (London)6, 141 (1965).

    Google Scholar 

  17. Bohn, L., Kolloid-Z. u. Z. Polymere213, 55 (1966).

    Google Scholar 

  18. Soen, T., T. Horino, Y. Ogawa, andH. Kawai, J. Appl. Polymer Sci.10, 1499 (1966).

    Google Scholar 

  19. Cooper, S. L. andA. V. Tobolsky, J. Appl. Polymer Sci.10, 1837 (1966);11, 1361 (1967).

    Google Scholar 

  20. Childers, C. W. andG. Kraus, Rubber Chem. Technol.40, 1183 (1967).

    Google Scholar 

  21. Beecher, J. F., L. Marker, R. D. Bradford, andS. L. Aggarwal, ACS Polymer Preprints8, 1532 (1967).

    Google Scholar 

  22. Nishioka, M., Ph. D. thesis presented to the Faculty of Engineering, Kyoto University, 1972.

  23. Kawamata, M. andY. Inoue, Kogyo Kagaku Zasshi63, 1831 (1960).

    Google Scholar 

  24. Ono, T., H. Minamiguchi, T. Soen, andH. Kawai, Kolloid-Z. u. Z. Polymere250, 394 (1972).

    Google Scholar 

  25. Nakatani, M., K. Iijima, A. Suganuma, andH. Kawai, J. Macromol. Sci. Phys.B2, 55 (1968).

    Google Scholar 

  26. Uchida, T., T. Soen, T. Inoue, andH. Kawai, J. Polymer Sci. A-2,10, 101 (1972).

    Google Scholar 

  27. Tobolsky, A. V., B. A. Dunell, andR. D. Andrews, Text. Res. J.31, 404 (1951).

    Google Scholar 

  28. Ferry, J. D., L. D. Grandine Jr., andE. R. Fitzgerald, J. Appl. Phys.24, 911 (1953).

    Google Scholar 

  29. Philippoff, W., J. Appl. Phys.24, 685 (1953).

    Google Scholar 

  30. Marvin, R. S., Proc. 2nd Intern. Cong. Rheol. pp. 156 (London 1953).

  31. Catsiff, E. andA. N. Tobolsky, J. Colloid Sci.10, 375 (1955).

    Google Scholar 

  32. Tobolsky, A. N., J. Appl. Phys.27, 673 (1956).

    Google Scholar 

  33. Schwarzl, F. andA. J. Staverman, J. Appl. Phys.23, 838 (1952).

    Google Scholar 

  34. Williams, M. L., R. F. Landel, andJ. D. Ferry, J. Amer. Chem. Soc.77, 3701 (1955).

    Article  Google Scholar 

  35. Sato, K., H. Nakane, T. Hideshima, andS. Iwayanagi, J. Phys. Soc. Japan9, 413 (1954).

    Google Scholar 

  36. Ferry, J. D., W. C. Child, Jr.,R. Zand, D. M. Stern, M. L. Williams, andR. F. Landel, J. Colloid Sci.12, 53 (1957).

    Google Scholar 

  37. Child, W. C., Jr. andJ. D. Ferry, J. Colloid Sci.12, 327, 389 (1957).

    Google Scholar 

  38. Fujimoto, T., Department of Synthetic Chemistry, Nagoya University, Nagoya, Japan, private communication.

  39. Ferry, J. D. andM. L. Williams, J. Colloid Sci.7, 347 (1952);M. L. Williams andJ. D. Ferry, J. Polymer Sci.11, 169 (1953).

    Google Scholar 

  40. Saito, N., K. Okano, S. Iwayanagi, andT. Hideshima, In:H. Ehrenreich, F. Seitz, andD. Turnbull (eds.), Solid State Physics, Vol. 14, pp. 458 (NewYork 1963).

  41. Nakayasu, H., H. Markovitz, andD. Plazek, Trans. Soc. Rheol.5, 261 (1961).

    Google Scholar 

  42. Takayanagi, M. andT. Matsuo, Macromol. Sci.-Phys.B1, 407 (1967).

    Google Scholar 

  43. Iwayanagi, S., paper presented at the 2nd Kyoto Seminar on Polymers, Kyoto 1968.

  44. Tajiri, Y., Y. Fujii, M. Aida, andH. Kawai, J. Macromol. Sci.-Phys.B4, 1 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr.R. Hosemann on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soen, T., Ono, T., Yamashita, K. et al. Domain structure and viscoelastic properties of graft copolymer. Kolloid-Z.u.Z.Polymere 250, 459–470 (1972). https://doi.org/10.1007/BF01507513

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01507513

Keywords

Navigation