Skip to main content
Log in

Discrimination between linear and non-linear models describing retention data of alkylbenzenes in gas-chromatography

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Detailed statistical analysis is presented to describe the retention indices of alkylbenzenes as a function of their physical (boiling point, modrefraction) and topological (connectivity and complexity indices) properties. With the help of several statistical characteristics (examination of residuals, F test, partial F test, termination criteria, correlation indices) a discrimination is made among different models. A nonlinear equation was chosen which describes the retention data on slightly polar phases with the practically attainable precision. A comparison with literature sources shows that this equation provides the smallest residual error and, hence, it can be applied for prediction purposes. A correlation was found between the preexponential factor in the simple exponential model and the polarity of stationary phases on the Tarján scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kaliszan, Quantitative Structure Chromatographic Retention Relationships, John Wiley & Sons, New York, 1987; Chapter 1, pp. 1–5.

    Google Scholar 

  2. V. M. Nabivach, A. V. Kirilenko, Chromatographia13, 93 (1980).

    Article  Google Scholar 

  3. F. Saura-Calixto, A. Garcia-Raso, Chromatographia15, 521 (1982).

    Article  Google Scholar 

  4. F. Bermejo, J. S. Canga, O. M. Gayol, Intern. Environ. Anal. Chem.11, 271 (1982).

    Google Scholar 

  5. F. Saura-Calixto, A. Garcia-Raso, J. Cañellas, Anal. Quim.79, 411 (1983).

    Google Scholar 

  6. J. Bermejo, J. S. Canga, O. M. Gayol, M. D. Guillén, J. Chromatogr. Sci.22, 252 (1984).

    Google Scholar 

  7. F. Saura-Calixto, A. Garcia-Raso, Intern. J. Environ. Anal. Chem.17, 279 (1984).

    Google Scholar 

  8. M. Gassiot-Matas, G. Firpo-Pamies, J. Chromatogr.187, 1 (1980).

    Article  Google Scholar 

  9. J. Bermejo, M. D. Guillén, Chromatographia17, 664 (1983).

    Article  Google Scholar 

  10. J. Bermejo, M. D. Guillén, J. High Resolut. Chrom. & Chrom. Commun.7, 191 (1984).

    Google Scholar 

  11. J. Bermejo, M. D. Guillén, Intern. J. Environ. Anal. Chem.23, 77 (1985).

    Google Scholar 

  12. S. Rang, K. Kuningas, T. Strenze, A. Orav, O. Eisen, J. Chromatogr.406, 75 (1987).

    Article  Google Scholar 

  13. J. Bermejo, M. D. Guillén, Anal. Chem.59, 94 (1987).

    Article  Google Scholar 

  14. O. Papp, GY. Szász, M. Farkas, G. Simon, I. Hermecz, J. Chromatogr.403, 19 (1987).

    Article  Google Scholar 

  15. R. V. Golovnya, D. N. Grigoryeva, J. High. Resolut. Chrom. & Chrom. Commun.9, 584 (1986).

    Google Scholar 

  16. J. Bermejo, C. G. Blanco, M. A. Diez, M. D. Guillén, Chromatographia23, 33 (1987).

    Google Scholar 

  17. L. Soják, J. Ruman, J. Janák, J. Chromatogr.391, 79 (1987).

    Article  Google Scholar 

  18. K. Héberger, Chromatographia25, 725 (1988).

    Google Scholar 

  19. K. Héberger, Anal. Chim. Acta223, 161 (1989).

    Article  Google Scholar 

  20. A. Tuabet, M. Maeck, A. Y. Badjah-Hadj-Ahmed, B. Y. Meklaty, Chromatographia25, 389 (1988).

    Google Scholar 

  21. L. Buydens, D. L. Massart, Anal. Chem.53, 1990 (1981).

    Article  Google Scholar 

  22. C. E. Döring, D. Estel, R. Fischer, J. prakt. Chem.316, 1 (1974).

    Article  Google Scholar 

  23. G. Dahlmann, H. J. K. Köser, H. H. Oelert, Chromatographia12, 665 (1979).

    Google Scholar 

  24. V. A. Gerasimenko, V. M. Nabivach, Zh. Anal. Khim.37, 110 (1982).

    Google Scholar 

  25. F. Vernon, J. B. Suratman, Chromatographia17, 600 (1983).

    Article  Google Scholar 

  26. Ye. Ye. Kugucheva, V. I. Mashinski, Zh. Anal. Khim.38, 2023 (1983).

    Google Scholar 

  27. T. Tóth, J. Chromatogr.279, 157 (1983).

    Article  Google Scholar 

  28. W. Engewald, I. Topalova, N. Petsev, Chr. Dimitrov, Chromatographia27, 561 (1987).

    Google Scholar 

  29. M. Frenklach, Modelling. In: Combustion Chemistry (Editor W. G. Gardiner) Springer Verlag, New York, 1984, Chapter p. pp. 423–453.

    Google Scholar 

  30. N. R. Draper, H. Smith, Applied Regression Analysis 2nd ed. John Wiley & Sons, New York, 1981; Chapter 1, pp. 1–69.

    Google Scholar 

  31. —; Chapter 3, pp. 141–192.

    Google Scholar 

  32. Y. Bard, Nonlinear Parameter Estimation, Academic Press, New York, 1974, Chapter 10-6, pp. 269–271.

    Google Scholar 

  33. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill Book Company, New York, 1969; Chapter 10-2 pp. 195–203.

    Google Scholar 

  34. —; Chapter 7-2, pp. 127–133.

    Google Scholar 

  35. D. M. Himmelblau, Process Analysis by Statistical Methods, John Wiley & Sons, New York, 1970; Chapters 3.7 and 3.8, pp. 68–76.

    Google Scholar 

  36. W. G. Bardsley, Symp. Biol. Hung.30, 267 (1986).

    Google Scholar 

  37. P. R. Rider, In Introduction to Modern Statistical Methods, John Wiley & Sons, New York, 1939, p. 58.

    Google Scholar 

  38. M. Ezekiel, K. A. Fox, Methods of Correlation and Regression Analysis, Linear and Curvilinear, Third Edition, John Wiley & Sons, New York, 1959; Section II, pp. 55–150.

    Google Scholar 

  39. Handbook of Chemistry and Physics, (Editor:R. C. Weast) CRC Press, Cleveland, Ohio: 54th edition, 1973–1974.

  40. E. Kováts in: Gas Chromatography 1968. (Editors:C.L.A. Harbourn andR. Stock) Institute of Petroleum, London, 1969, p. 73.

    Google Scholar 

  41. N. Dimov, P. Papazova, Chromatographia12, 720 (1979).

    Article  Google Scholar 

  42. N. Dimov, OV. Mekenyan, Anal. Chim. Acta212, 317 (1988).

    Article  Google Scholar 

  43. G. Tarján, Á. Kiss, G. Kocsis, S. Mészáros, J. M. Takács, J. Chromatogr.119, 327 (1976).

    Article  Google Scholar 

  44. N. P. Dimov, J. Chromatogr.360, 25 (1986).

    Article  Google Scholar 

  45. L. Rohrschneider, Chromatographia2, 437 (1969).

    Article  Google Scholar 

  46. L. S. Ettre, Chromatographia13, 73 (1980).

    Article  Google Scholar 

  47. R. V. Golovnya, D. N. Grigoryeva, Chromatographia17, 613 (1983).

    Article  Google Scholar 

  48. H. Lamparczyk, A. Radeczki, Chromatographia18, 615 (1984).

    Article  Google Scholar 

  49. M. V. Budahegyi, E. R. Lombosi, T. S. Lombosi, S. Y. Mészáros, Sz. Nyiredy, G. Tarján, I. Timár, J. M. Takács, J. Chromatogr.271, 213 (1983).

    Article  Google Scholar 

  50. K. Héberger, S. Kemény, T. Vidóczy, Int. J. Chem. Kinet.19, 171 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Héberger, K. Discrimination between linear and non-linear models describing retention data of alkylbenzenes in gas-chromatography. Chromatographia 29, 375–384 (1990). https://doi.org/10.1007/BF02261306

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02261306

Key Words

Navigation