The mercury-mercury bond in inorganic and organometallic compounds. A theoretical study

https://doi.org/10.1016/S0020-1693(00)83833-5Get rights and content

Abstract

The effects of relativity and electron correlation in diatomic mercury HgX compounds and in linear HgX2 and Hg2X2 compounds (X=H, F, Cl, CH3 and CF3) are investigated using relativistic pseudopotential and local density approximation calculations. The stability of the HgHg bond in Hg2X2 is found to be influenced significantly by the electronegativity of the ligand X. Electronegative ligands such as fluorine (X=F) lead to strong mercury based radical character in the HgX monomer unit supporting an HgHg bond to form a stable Hg2X2. This effect diminishes for less electronegative ligands such as X=H or CH3 where the unpaired electron is localized more towards the ligand X. As a consequence, HgHg bonding in Hg2(CH3)2 is very weak which may explain why organomercury compounds of the form Hg2R2 (R=any organic group) have not yet been observed. Among these organomercury compounds Hg2(CF3)2 will be most stable. Relativistic and electron correlations effects are shown to have a significant influence on this trend. Hg2(CR3)2 is isolobal to Au2(PR3)2 and it is proposed that the Hg2(CR3)2 unit may be stabilized at other metal centres.

References (110)

  • K.P. Butin et al.

    J. Organomet. Chem.

    (1974)
  • K.P. Butin et al.

    J. Organomet. Chem.

    (1974)
  • K.P. Butin et al.

    J. Organomet. Chem.

    (1974)
  • D. Strömberg et al.

    Chem. Phys. Lett.

    (1990)
  • P. Schwerdtfeger

    Chem. Phys. Lett.

    (1991)
  • G.A. Bowmaker et al.

    J. Mol. Struct. (Theochem.)

    (1990)
  • S. Huzinaga

    J. Mol. Struct. (Theochem.)

    (1991)
  • P. Hafner et al.

    Chem. Phys. Lett.

    (1979)
  • A. Bernier et al.

    Chem. Phys.

    (1986)
  • P. Ros et al.

    Chem. Phys. Lett.

    (1980)
  • M. Kolar

    Comput. Phys. Commun.

    (1981)
  • E.J. Baerends et al.

    Chem. Phys.

    (1973)
  • C.W. Murray et al.

    Chem. Phys. Lett.

    (1992)
  • J.A. Pople et al.

    Chem. Phys. Lett.

    (1992)
  • H. Oberhammer

    J. Mol. Struct.

    (1978)
  • F.A. Cotton et al.
    (1988)
  • K. Brodersen et al.
  • W.E. Dasent
    (1965)
  • E. Dorm

    J. Chem. Soc., Chem. Commun.

    (1971)
  • M.S. Liao
    (1993)
  • J. Casanova et al.

    J. Am. Chem. Soc.

    (1974)
  • Ch. Elschenbroich et al.
    (1989)
  • T. Ziegler et al.

    J. Chem. Phys.

    (1981)
  • R.P. Neisler et al.

    J. Phys. Chem.

    (1987)
  • Ph. Durand et al.

    J. Phys. B

    (1987)
  • P. Pyykkö

    Chem. Rev.

    (1988)
  • W.H.E. Schwarz
  • P. Schwerdtfeger et al.

    J. Chem. Phys.

    (1989)
  • P. Schwerdtfeger

    J. Am. Chem. Soc.

    (1989)
  • P. Schwerdtfeger et al.

    Phys. Rev. A

    (1991)
  • P. Schwerdtfeger et al.

    Inorg. Chem.

    (1992)
  • P. Schwerdfeger et al.

    Inorg. Chem.

    (1990)
  • C.E. Moore
    (1958)
  • M. Dolg et al.

    J. Chem. Phys.

    (1987)
  • D. Andrae et al.

    Theor. Chim. Acta

    (1990)
  • H. Hosoya
    (1992)
  • J.K. Labanowski et al.
    (1991)
  • M. Krauss et al.

    Ann. Rev. Phys. Chem.

    (1984)
  • G. Das et al.

    J. Chem. Phys.

    (1976)
  • P. Hafner et al.

    J. Phys. B

    (1978)
  • P. Hafner et al.

    J. Phys. B

    (1978)
  • H. Basch et al.

    J. Chem. Phys.

    (1978)
  • H. Basch et al.

    J. Chem. Phys.

    (1979)
  • W. Schwartmann
    (1979)
  • P.J. Hay et al.

    J. Chem. Phys.

    (1978)
  • P.J. Hay et al.

    J. Chem. Phys.

    (1985)
  • M.E. Rosenkrantz et al.

    J. Chem. Phys.

    (1980)
  • D.B. Neumann et al.

    J. Chem. Phys.

    (1981)
  • W.J. Stevens et al.

    J. Phys. B

    (1983)
  • K.C. Celestino et al.

    J. Chem. Phys.

    (1984)
  • Cited by (0)

    View full text