The Fréjus nucleon decay detector

https://doi.org/10.1016/0168-9002(87)90890-4Get rights and content

Abstract

The characteristics, trigger and monitoring systems, data acquisition as well as the performance of the Fréjus nucleon decay detector are presented.

References (28)

  • F.E. Taylor

    IEEE Trans. Nucl. Sci. NS-27

    (1980)
    D. Bogert

    IEEE Trans. Nucl. Sci. NS-29

    (1982)
  • Linit 10, Sulzer Bros (UK), Blackwater way, Aldershot Hampshire GU12 4DR,...
  • IEEE STD 488-1975, Standard Digital Interface for Programmable Instrumentation, IEEE Instrumentation and Measurement...
  • J. Augustin

    Nucl. Instr. and Meth.

    (1965)
  • P. Bareyre

    Proposition d'une expérience pour l'étude de l'instabilité du nucléon au moyen d'un détecteur calorimétrique

    (1980)
  • A. Rousset et al.

    TRAVAUX

    (février 1983)
  • M. Conversi et al.

    Nuovo Cim.

    (1955)
    M. Conversi et al.

    Nucl. Instr. and Meth.

    (1978)
  • R.C. Allen

    IEEE Trans. Nucl. Sci. NS-28

    (1981)
  • Beghin-Say, Division AKILUX, Kunheim, 68 Kaysersberg,...
  • Nieff, 213 av. de la Pressence, 69200 Venissieux,...
  • J. Thierjung, Diplomarbeit, Univ. Wuppertal, No. WUP...
  • A. Baracat et al.

    Internal Report 85-019

    (1985)
  • Montedison France, Tour Franklin-Cedex 11, 92081 Paris La...
  • R.A. Smythe

    Nucl. Instr. and Meth.

    (1982)
  • Cited by (55)

    • Air radioactivity levels following the Fukushima reactor accident measured at the Laboratoire Souterrain de Modane, France

      2012, Journal of Environmental Radioactivity
      Citation Excerpt :

      The Laboratoire Souterrain de Modane is located in the South-East of France in the Fréjus tunnel connecting France and Italy. The rock overburden under the Fréjus peak of ∼1800 m (4800 m.w.e) reduces the cosmic muon flux to 4 μ/m2/d (Berger et al., 1987). The air is renewed in the laboratory by blowing fresh air with an average flow of 5000 m3/h, allowing full renewal of the laboratory air volume ∼1.5 times per hour.

    • Low background germanium planar detector for gamma-ray spectrometry

      2011, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
    • Proton stability in grand unified theories, in strings and in branes

      2007, Physics Reports
      Citation Excerpt :

      Thus several new experiments have been proposed based mainly on two techniques: the usual water Cherenkov detector and the use of noble gases, the Liquid Argon Time Projection Chamber (LAr TPC). The proposed future experiments based on the water Cherenkov detector are: the one-megaton HYPERK [29,30], the UNO experiment [31] with a 650 kt of water, while the experiment 3M [32] is proposed with a 1000 kt and the European megaton project MEMPHYS at Frejus [33]. The analysis above shows that the R-parity violating couplings could be large in supersymmetric scenarios with large susy breaking scale.

    • Muon tracking detector for the air shower experiment KASCADE

      2002, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
    View all citing articles on Scopus

    Supported by the BMFT, FRG.

    ∗∗

    Institut National de Physique Nucléaire et de Physique des Particules du CRNS.

    View full text