Elsevier

Nuclear Physics A

Volume 322, Issue 1, 11 June 1979, Pages 205-236
Nuclear Physics A

Q- and Z-dependence of angular momentum transfer in deeply inelastic collisions of 86Kr with 209Bi

https://doi.org/10.1016/0375-9474(79)90342-7Get rights and content

Abstract

The dependence of the in-plane and out-of-plane angular correlations of fragments from fissioning heavy products on the kinetic energy and Z of the light reaction partner have been measured. From the dependence of the angular correlations on Q-value and hence energy loss, together with existing data from which the total angle-integrated cross section as a function of energy loss can be extracted, we have determined the dependence of the angular momentum transferred to the heavy product on the initial orbital angular momentum or impact parameter. The resulting dependence is qualitatively consistent with the sticking limit for a reaction intermediate of touching deformed fragments. More specific nuclear models generally underestimate the angular momentum transfer, although the one-body proximity-friction model accounts for the major fraction of the angular momentum transfer. A recent model incorporating both one-body proximity friction and collective excitations accounts quite well for the observed angular momentum transfer. The Z-dependendence of the anisotropy shows the importance of angular momentum fractionation for the less probable events, where the Z of the fissioning system is appreciably less than that of the target. The transferred angular momentum is shown to be fairly strongly aligned along the perpendicular to the reaction plane, with alignment values of 0.6 to 0.8. The component of angular momentum not along the perpendicular to the reaction plane is found to be primarily oriented perpendicular rather than parallel to the recoil direction. The absolute fission probabilities are found to be qualitatively consistent with J-dependent calculations using the J-values deduced from the angular correlations.

References (52)

  • A. Gamp et al.

    Phys. Lett.

    (1978)
  • B.B. Back et al.

    Nucl. Phys.

    (1978)
  • V.E. Viola et al.

    J. Inorg. Nucl. Chem.

    (1966)
  • L.G. Moretto et al.

    Phys. Lett.

    (1972)
  • H.H. Deubler et al.

    Nucl. Phys.

    (1977)
  • R.A. Broglia et al.

    Phys. Lett.

    (1978)
  • J. Randrup

    Ann. of Phys.

    (1978)
  • K.L. Wolf et al.

    Phys. Rev. Lett.

    (1974)
  • W.U. Schröder et al.

    Ann. Rev. Nucl. Sci.

    (1977)
  • M. Berlanger et al.

    J. Phys. Lett.

    (1977)
  • M.M. Aleonard et al.

    Phys. Rev. Lett.

    (1978)
  • P. Dyer et al.

    Phys. Rev. Lett.

    (1977)
  • J.M. Miller et al.

    Phys. Rev. Lett.

    (1978)
  • G.J. Wozniak et al.

    Phys. Rev. Lett.

    (1978)
  • L.C. Northcliff et al.

    Nucl. Data Tables

    (1970)
  • K. Van Bibber et al.

    Phys. Rev. Lett.

    (1977)
  • H. Ho et al.

    Z. Phys.

    (1977)
  • W. Trautmann et al.

    Phys. Rev. Lett.

    (1977)
  • R. Vandenbosch et al.

    Nuclear fission

    (1973)
  • M.E. Rose

    Elementary theory of angular momentum

    (195)
  • R. Chaudhry et al.

    Phys. Rev.

    (1962)
  • L. G. Moretto, R. C. Gatti and S. G. Thompson, LBL Report No. LBL-1666,...
  • S.S. Kapoor et al.

    Phys. Rev.

    (1966)
  • R.G. Clark et al.

    Z. Phys.

    (1975)
  • R. Bimbot et al.

    J. de Phys.

    (1969)
  • W.G. Meyer
  • Cited by (0)

    View full text