Elsevier

Nuclear Physics A

Volume 407, Issue 3, 17 October 1983, Pages 269-296
Nuclear Physics A

On the spheroidal bag

https://doi.org/10.1016/0375-9474(83)90654-1Get rights and content

Abstract

We derive the eigenmodes of quarks and gluons moving in a statically deformed spheroidal cavity satisfying the linear boundary condition of the MIT bag model. Using the gluon propagator of the deformed cavity we determine the quark-quark interaction via one-gluon exchange for massless quarks in the ground state.

The model is then applied to nonstrange baryons, and the ground state energy of this three-quark system is calculated as a function of the deformation. With non-interacting quarks the nucleon and the Δ-isobar turn out to be spherically symmetric, as expected. Switching on the one-gluon-exchange interaction, the nucleon still remains spherically symmetric, while the Δ-resonance develops a large oblate or prolate deformation depending on the spin projection on the symmetry axis.

References (13)

  • M.E. Rose

    Relativistic electron theory

    (1961)
  • L. Wilets et al.

    Bull. Am. Phys. Soc.

    (1982)
    R. Shanker et al.

    J. of Phys.

    (1982)
  • J. KutiT.D. Lee

    Particle physics and introduction to field theory

    (1981)
  • A. Chodos et al.

    Phys. Rev.

    (1974)
    A. Chodos et al.

    Phys. Rev.

    (1974)
    A. Chodos et al.

    Phys. Rev.

    (1975)
    K. Johnson

    Acta Phys. Pol.

    (1975)
  • W.A. Bardeen et al.

    Phys. Rev.

    (1975)
    P. Hasenfratz et al.

    Phys. Reports

    (1978)
    R. Friedberg et al.

    Phys. Rev.

    (1977)
    R. Friedberg et al.

    Phys. Rev.

    (1978)
    G.E. Brown et al.

    Phys. Lett.

    (1979)
    V. Vento et al.

    Nucl. Phys.

    (1980)
    A.W. Thomas et al.

    Phys. Rev.

    (1980)
    A.W. Thomas et al.

    Phys. Rev.

    (1981)
  • P.J. Mulders, Bhamathi, L. Heller, A.T. Aerts and A.K. Kerman, Los Alamos preprint...
There are more references available in the full text version of this article.

Cited by (0)

Present address: Department of Physics, University of California, Los Angeles, California 90024.

View full text