Elsevier

Journal of Nuclear Materials

Volume 216, October 1994, Pages 348-363
Journal of Nuclear Materials

Microstructural and microchemical mechanisms controlling intergranular stress corrosion cracking in light-water-reactor systems

https://doi.org/10.1016/0022-3115(94)90020-5Get rights and content

Abstract

This review paper examines mechanisms controlling IGSCC in selected LWR components. Emphasis is placed on identifying material microstructures and microchemistries which promote susceptibility to premature failure. Two important examples are evaluated in some detail: stainless steel pipe cracking and primary-side SCC of alloy 600 steam generator tubing. In each case, grain boundary segregation and precipitation phenomena in these materials are reviewed and assessed relative to the mechanisms of IGSCC. This paper summarizes materials presented at the 1993 International Summer School on the Fundamentals of Radiation Damage held at the University of Illinois. A more comprehensive overview of SCC mechanisms and LWR examples was provided at the school, but will not be included in this article. Microstructural and microchemical aspects controlling IGSCC described here serve as a lead-in to the following paper focussing on how irradiation influences SCC resistance of reactor core components.

References (77)

  • J.B. Lumsden et al.

    Scripta Metall.

    (1981)
  • L. Karlsson et al.

    Acta Metall.

    (1988)
  • C.S. Tedmon et al.

    J. Electrochem. Soc.

    (1971)
  • A. Desestret

    Contributions a'l'Etude de la Transpassivite des Aciers Inoxydables

  • K. Norring et al.
  • S.M. Bruemmer et al.

    Corr. J.

    (1988)
  • R.C. Pond et al.

    Philos. Mag.

    (1978)
  • D.C. Crawford et al.

    Metall. Trans.

    (1992)
  • R.L. Jones et al.
  • S.J. Green

    Corrosion

  • B.M. Gordon et al.

    Corrosion

  • S.M. Bruemmer
  • V. Cihal

    Intergranular Corrosion of Steels and Alloys

  • R. Strickler et al.

    Trans. ASM

    (1961)
  • E.C. Bain et al.

    Trans. Am. Soc. Steel Treating

    (1933)
  • C.L. Briant

    Scripta Metall.

    (1987)
  • A.W. James et al.

    Mater. Sci. Technol.

    (1989)
    S. Dumbill et al.

    Mater. Sci. Technol.

    (1991)
  • A. Joshi et al.

    Corr. J.

    (1972)
  • K. Osozawa et al.

    Corr. Sci.

    (1966)
  • W.J. Shack

    Environmentally Assisted Cracking in Light Water Reactors

    US Nuclear Regulatory Commission, NUREG/CR-3806

    (1984)
    W.J. Shack

    US Nuclear Regulatory Commission, NUREG/CR-4287

    (1985)
  • M. Fox

    J. Mater. Energy Syst.

    (1979)
  • F.A. Nichols

    Mechanistic Aspects of Stress Corrosion Cracking of 304 Stainless Steel in LWR Service

    US Nuclear Regulatory Commission, NUREG/CR-3220

    (1983)
  • F.P. Ford et al.

    Mechanisms of Environmental Cracking in Systems Peculiar to the Power Generation Industry

    Electric Power Research Institute, Palo Alto, CA, EPRI-NP-2587

    (1982)
  • R.L. Cowan et al.
  • S. Szklarska-Smialowska et al.

    Corr. J.

    (1980)
  • M.E. Indig et al.
  • B. Rosborg et al.
  • D.D. Macdonald et al.
  • K. Osozawa et al.

    Corr. Sci.

    (1966)
  • Aho-Mantila et al.
  • J.S. Armijo

    Corr. J.

    (1968)
    J.S. Armijo

    Grain Boundary Studies of Austenitic Stainless Steels

    General Electric Company, GEAP-5503

    (1967)
  • G.M. Gordon
  • B. Vyas et al.
  • S.M. Bruemmer et al.

    Corr. J.

    (1987)
  • I. Oleford

    Mater. Sci. Eng.

    (1980)
  • A.E. Yaniv et al.

    J. Electrochem. Soc.

    (1979)
  • C.L. Briant et al.

    Corr. J.

    (1986)
  • S.M. Bruemmer

    Corr. J.

    (1988)
  • Cited by (0)

    View full text