The complex refractive index of SiGe alloys at 632.8 nm has been measured as a function of the Ge concentration using insitu ellipsometry while the material is slowly removed from a silicon substrate using reactive‐ion etching (RIE). Homogeneous, strained epitaxial SiGe films on silicon substrates were used. The Ge concentration was obtained by Rutherford backscattering. If an unknown SiGe structure is etched with RIE, insitu ellipsometry yields combinations of the ellipsometric angles Ψ and Δ with time. Starting at the Si substrate, these points are, on a point‐to‐point basis, converted into combinations of complex refractive index and depth in a numerical procedure. For this inversion of the ellipsometry equations, the known relation between the real and the imaginary part of the refractive index of SiGe is used. Finally the refractive indices are converted into Ge concentrations. Thus the depth profile of the Ge concentration in an unknown epitaxial SiGe structure can be inferred from an insitu ellipsometric measurement during RIE of the unknown structure. The obtained resolutions in depth and Ge concentration are 0.3 nm and 0.3%, respectively.

1.
Various authors, in Proceedings 1989 IEEE International Electron Devices Meeting, Washington DC, December 3–6, 1989, IEEE catalog number CH2637–7, pp 637–662, 1989.
2.
G. L.
Patton
,
J. H.
Comfort
,
B. S.
Meyerson
,
E. F.
Crabbé
,
G. J.
Scilla
,
E.
de Frésart
,
J. M. C.
Stork
,
J. Y.-C.
Sun
,
D. L.
Harame
, and
J. N.
Burgharz
,
IEEE Electron Device Lett.
EDL-11
,
171
(
1990
).
3.
E.
de Frésart
and
G. W.
Rubloff
,
IBM Techn. Disci. Bull.
31
,
268
(
1989
).
4.
E.
Schmidt
and
K.
Vedam
,
Solid State Commun.
9
,
1187
(
1971
).
5.
J.
Humlicek
,
M.
Garriga
,
M. I.
Alonso
, and
M.
Cardona
,
J. Appl. Phys.
65
,
2827
(
1989
).
6.
R.
Braunstein
,
A. R.
Moore
, and
F.
Herman
,
Phys. Rev.
109
,
695
(
1958
).
7.
F.
Lukes
,
E.
Schmidt
,
J.
Humlicek
,
M. K.
Kekoua
, and
E.
Khoutsichvili
,
Phys. Status Solidi A
53
,
321
(
1979
).
8.
E.
Schmidt
,
Phys. Status Solidi
27
,
57
(
1968
).
9.
O. I.
Guzva
,
P. A.
Gentsar
,
A. M.
Evstigneev
,
A. N.
Krasniko
,
N. D.
Marchuk
,
T. N.
Nikolaeva
,
O. V.
Snitko
, and
V. P.
Cherkasin
,
Sov. Phys. Semicond.
21
,
856
(
1987
).
10.
J.
Humlicek
,
F.
Lukes
, and
E.
Schmidt
,
Solid State Commun.
47
,
387
(
1983
).
11.
K.-H. Hellewege, Ed., Landolt-Bomstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. 17, Semiconductors, subvolume (a), edited by O. Madelung (Springer, New York, 1982), pp. 142–143 and pp. 4491–54.
12.
M. A.
Jaso
and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
6
,
1397
(
1988
).
13.
P. S.
Hauge
and
F. H.
Dill
,
Opt. Commun.
14
,
431
(
1975
).
14.
B. S.
Meyerson
,
K. J.
Uram
, and
F. K.
LeGoues
,
Appl. Phys. Lett.
53
,
2555
(
1988
).
15.
R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987).
16.
F.
Abelés
,
Ann. Phys. (Paris)
5
,
596
(
1950
), summarized in M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1959).
17.
F. L. McCrackin, A FORTRAN Program for Analysis of Ellipsometry Measurements, N.B.S. Technical Note 479, National Bureau of Standards, Washington DC, 1969.
18.
G. M. W.
Kroesen
,
G. S.
Oehrlein
, and
T. D.
Bestwick
,
J. Appl. Phys.
69
,
3390
(
1991
).
19.
G. S.
Oerhlein
,
I.
Reimanis
, and
Y. L.
Lee
,
Thin Solid Films
143
,
269
(
1986
).
20.
J. L.
Buckner
,
D. J.
Vitkavage
,
E. A.
Irene
, and
T. M.
Mayer
,
J. Electrochem. Soc.
133
,
1729
(
1986
).
21.
D. E.
Aspnes
and
A. A.
Studna
,
Phys. Rev. B
27
,
985
(
1983
).
22.
M. C. Kohn, Practical Numerical Methods (MacMillari, New York, 1987).
This content is only available via PDF.
You do not currently have access to this content.