Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conservation of folding pathways in evolutionarily distant globin sequences

Abstract

To test the hypothesis that the folding pathways of evolutionarily related proteins with similar three-dimensional structures but widely different sequences should be similar, the folding pathway of apoleghemoglobin has been characterized using stopped-flow circular dichroism, heteronuclear NMR pulse labeling techniques and mass spectrometry. The pathway of folding was found to differ significantly from that of a protein of the same family, apomyoglobin, although both proteins appear to fold through helical burst phase intermediates. For leghemoglobin, the burst phase intermediate exhibits stable helical structure in the G and H helices, together with a small region in the center of the E helix. The A and B helices are not stabilized until later stages of the folding process. The structure of the burst phase folding intermediate thus differs from that of apomyoglobin, in which stable helical structure is formed in the A, B, G and H helix regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the sequences of Mb and Lb.
Figure 2: Comparison of the pH and urea dependent behaviors of apoLb and apoMb.
Figure 3: Kinetics of apoLb refolding from urea.
Figure 4: 15N-1H HSQC spectrum of LbCO after reconstitution.
Figure 5: Summary of the quench-flow results for Lb.
Figure 6: Effect of labeling pulse strength and duration.
Figure 7: Mass spectrometric analysis of the folding pathway of apoLb.
Figure 8: Stereo view of the backbone structure of soybean Lb a17.

Similar content being viewed by others

References

  1. Lesk, A.M. & Chothia, C. How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J. Mol. Biol. 136, 225–270 (1980).

    Article  CAS  Google Scholar 

  2. Bashford, D., Chothia, C. & Lesk, A.M. Determinants of a protein fold. Unique features of the globin amino acid sequence. J. Mol. Biol. 196, 199–216 (1987).

    Article  CAS  Google Scholar 

  3. Hollecker, M. & Creighton, T.E. Evolutionary conservation and variation of protein folding pathways. J. Mol. Biol. 168, 409–437 (1983).

    Article  CAS  Google Scholar 

  4. Krebs, H., Schmid, F.X. & Jaenicke, R. Folding of homologous proteins. J. Mol. Biol. 169, 619–635 (1983).

    Article  CAS  Google Scholar 

  5. Stackhouse, T.M., Onuffer, J.J., Matthews, C.R., Ahmed, S.A. & Miles, E.W. Folding of homologous proteins: conservation of the folding mechanism of the a subunit of tryptophan synthase from Escherichia coli, Salmonella typhimurium, and five interspecies hybrids. Biochemistry 27, 824–832 (1988).

    Article  CAS  Google Scholar 

  6. Jaenicke, R. Folding and association of proteins. Prog. Biophys. Mol. Biol. 49, 117–237 (1987).

    Article  CAS  Google Scholar 

  7. Plaxco, K.W., Spitzfaden, C., Campbell, I.D. & Dobson, C.M. A comparison of the folding kinetics and thermodynamics of two homologous fibronectin type III modules. J. Mol. Biol. 270, 763–770 (1997).

    Article  CAS  Google Scholar 

  8. Chiti, F., et al. Mutational analysis of acylphosphatase suggests the importance of topology and contact order in protein folding. Nature Struct. Biol. 6, 1005–1009 (1999).

    Article  CAS  Google Scholar 

  9. Riddle, D.S., Grantcharova, V.P., Santiago, J.V., Alm, E., Ruczinski, I. & Baker, D. Experiment and theory highlight role of native state topology in SH3 folding. Nature Struct. Biol. 6, 1016–1024 (1999).

    Article  CAS  Google Scholar 

  10. Martinez, J.C. & Serrano, L. The folding transition state between SH3 domains is conformationally restricted and evolutionarily conserved. Nature Struct. Biol. 6, 1010–1016 (1999).

    Article  CAS  Google Scholar 

  11. Ptitsyn, O.B. & Ting, K.L. Non-functional conserved residues in globins and their possible role as a folding nucleus. J. Mol. Biol. 291, 671–682 (1999).

    Article  CAS  Google Scholar 

  12. Appleby, C.A. Leghemoglobin and Rhizobium respiration. Annu. Rev. Plant Physiol. 35, 443–478 (1984).

    Article  CAS  Google Scholar 

  13. Appleby, C.A. The origin and functions of hemoglobin in plants. Sci. Progr. 76, 365–398 (1992).

    CAS  Google Scholar 

  14. Landsmann, J., Dennis, E.S., Higgins, T.J.V., Appleby, C.A., Kortt, A.A. & Peacock, W.J. Common evolutionary origin of legume and non-legume plant haemoglobins. Nature 324, 166–168 (1986).

    Article  CAS  Google Scholar 

  15. Callaway, D.J.E. Solvent-induced organization: a physical model of folding myoglobin. Proteins 20, 124–138 (1994).

    Article  CAS  Google Scholar 

  16. Chelvanayagam, G., Reich, Z., Bringas, R. & Argos, P. Prediction of protein folding pathways. J. Mol. Biol. 227, 901–916 (1992).

    Article  CAS  Google Scholar 

  17. Hargrove, M.S., et al. Characterization of recombinant soybean leghemoglobin a and apolar distal histidine mutants. J. Mol. Biol. 266, 1032–1042 (1997).

    Article  CAS  Google Scholar 

  18. Ellis, P.J., Appleby, C.A., Guss, J.M., Hunter, W.N., Ollis, D.L. & Freeman, H.C. The crystal structure of ferric soybean leghemoglobin a nicotinate at 2.3 Å resolution. Acta Crystallogr. D 53, 302–310 (1997).

    Article  CAS  Google Scholar 

  19. Kuriyan, J., Wilz, S., Karplus, M. & Petsko, G.A. X-ray structure and refinement of carbon-monoxy (Fe II)-myoglobin at 1.5 Å resolution. J. Mol. Biol. 192, 133–154 (1986).

    Article  CAS  Google Scholar 

  20. Morikis, D. & Wright, P.E. Hydrogen exchange in the carbon monoxide complex of soybean leghemoglobin. Eur. J. Biochem. 237, 212–220 (1996).

    Article  CAS  Google Scholar 

  21. Tsui, V., Garcia, C., Cavagnero, S., Siuzdak, G., Dyson, H.J. & Wright, P.E. Quench-flow experiments combined with mass spectrometry show apomyoglobin folds through an obligatory intermediate. Protein Sci. 8, 45–49 (1999).

    Article  CAS  Google Scholar 

  22. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896 (1993).

    Article  CAS  Google Scholar 

  23. Hughson, F.M., Wright, P.E. & Baldwin, R.L. Structural characterization of a partly folded apomyoglobin intermediate. Science 249, 1544–1548 (1990).

    Article  CAS  Google Scholar 

  24. Eliezer, D., Yao, J., Dyson, H.J. & Wright, P.E. Structural and dynamic characterization of partially folded states of myoglobin and implications for protein folding. Nature Struct. Biol. 5, 148–155 (1998).

    Article  CAS  Google Scholar 

  25. Jamin, M. & Baldwin, R.L. Refolding and unfolding kinetics of the equilibrium folding intermediate of apomyoglobin. Nature Struct. Biol. 3, 613–618 (1996).

    Article  CAS  Google Scholar 

  26. Luo, Y., Kay, M.S. & Baldwin, R.L. Cooperativity of folding of the apomyoglobin pH 4 intermediate studied by glycine and proline mutations. Nature Struct. Biol. 4, 925–930 (1997).

    Article  CAS  Google Scholar 

  27. Cavagnero, S., Dyson, H.J. & Wright, P.E. Effect of H helix destabilizing mutations on the kinetic and equilibrium folding of apomyoglobin. J. Mol. Biol. 285, 269–282 (1999).

    Article  CAS  Google Scholar 

  28. Garcia, C., Nishimura, C., Cavagnero, S., Dyson, H.J. & Wright, P.E. Changes in the apomyoglobin folding pathway caused by mutations of the distal histidine residue. Biochemistry in the press (2000).

  29. Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H. & Zehfus, M.H. Hydrophobicity of amino acid residues in globular proteins. Science 229, 834–838 (1985).

    Article  CAS  Google Scholar 

  30. Muñoz, V. & Serrano, L. Development of the multiple sequence approximation within the AGADIR model of α-helix formation: comparison with Zimm-Bragg and Lifson-Roig formalisms. Biopolymers 41, 495–509 (1997).

    Article  Google Scholar 

  31. Waltho, J.P., Feher, V.A., Merutka, G., Dyson, H.J. & Wright, P.E. Peptide models of protein folding initiation sites. 1. Secondary structure formation by peptides corresponding to the G- and H-helices of myoglobin. Biochemistry 32, 6337–6347 (1993).

    Article  CAS  Google Scholar 

  32. Shin, H.-C., Merutka, G., Waltho, J.P., Tennant, L.L., Dyson, H.J. & Wright, P.E. Peptide models of protein folding initiation sites. 3. The G-H helical hairpin of myoglobin. Biochemistry 32, 6356–6364 (1993).

    Article  CAS  Google Scholar 

  33. Dalessio, P.M. & Ropson, I.J. β-sheet proteins with nearly identical structures have different folding intermediates. Biochemistry 39, 860–871 (2000).

    Article  CAS  Google Scholar 

  34. Prytulla, S., Dyson, H.J. & Wright, P.E. Gene synthesis, high-level expression and assignment of backbone 15N and 13C resonances of soybean leghemoglobin. FEBS Lett. 399, 283–289 (1996).

    Article  CAS  Google Scholar 

  35. Ellfolk, N. & Sievers, G. Circular dichroism of soybean leghemoglobin. Biochim. Biophys. Acta 405, 213–227 (1975).

    Article  CAS  Google Scholar 

  36. Delaglio, F., Grzesiek, S., Vuister, G.W., Guang, Z., Pfeifer, J. & Bax, A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  37. Morikis, D., Lepre, C.A. & Wright, P.E. 1H resonance assignments and secondary structure of the carbon monoxide complex of soybean leghemoglobin determined by homonuclear two-dimensional and three-dimensional NMR spectroscopy. Eur. J. Biochem. 219, 611–626 (1994).

    Article  CAS  Google Scholar 

  38. Miranker, A., Robinson, C.V., Radford, S.E. & Dobson, C.M. Investigation of protein folding by mass spectrometry. FASEB J. 10, 93–101 (1996).

    Article  CAS  Google Scholar 

  39. Cavagnero, S., Thériault, Y., Narula, S.S., Dyson, H.J. & Wright, P.E. Amide proton hydrogen exchange rates for sperm whale myoglobin obtained from 15N-1H NMR spectra. Protein Sci. 9, 186–193 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Chung for assistance with the NMR experiments, D. Eliezer, J. Yao, P. Jennings, C. Garcia, V. Tsui and S. Cavagnero for helpful discussions, and L. Tennant for expert technical assistance. This work was supported by grants from the National Institutes of Health. S.P. was supported by a fellowship from the Deutsches Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Jane Dyson or Peter E. Wright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimura, C., Prytulla, S., Jane Dyson, H. et al. Conservation of folding pathways in evolutionarily distant globin sequences. Nat Struct Mol Biol 7, 679–686 (2000). https://doi.org/10.1038/77985

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77985

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing