Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ligand-induced distortion of an active site in thymidylate synthase upon binding anticancerdrug 1843U89

Abstract

The anticancer drug 1843U89 inhibits thymidylate synthase (TS) at sub-nanomolar concentrations and is undergoing clinical trial. The 1.95 Å crystal structure of Escherichia coli TS bound to the drug and dUMP reveals that the 1843U89 binding surface includes a hydrophobic patch that is normally buried. To reach this patch, 1843U89 inserts into the wall of the TS active site, resulting in a severe local distortion of the protein. In this new conformation, active-site groups that normally bind to the catalytic cofactor methylene-tetrahydrofolate instead bind to 1843U89 in new ways. This structure provides a rare example of a protein that can bind tightly to distinct substances using a single, flexible, binding surface. This has implications for drug design, as 1843U89 could not have been obtained from current structure-based approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Santi, D.V. & Danenberg, P.V. in Folates and Pterins: Volume 1 -Chemistry and Biochemistry of Folates (eds Blakley, R.L. & Benkovic, S.J.) 345–398 (John Wiley & Sons, Inc., New York, 1984).

    Google Scholar 

  2. Dev, I.K. et al. Mode of binding of folate analogs to thymidylate synthase. J. biol. Chem. 269, 1873–1882 (1994).

    CAS  PubMed  Google Scholar 

  3. Duch, D.S. et al. Biochemical and cellular pharmacology of 1843U89, a novel benzoquinazoline inhibitor of thymidylate synthase. Cancer Res. 53, 810–818 (1993).

    CAS  PubMed  Google Scholar 

  4. Jones, T.R. et al. A potent antitumor quinazoline inhibitor of thymidylate synthetase: synthesis, biological properties, and therapeutic results in mice. Eur. J. Cancer 17, 11–19 (1981).

    Article  CAS  Google Scholar 

  5. Alison, D.L. et al. The clinical pharmacokinetics of the novel antifolate N10-propargyl-5,8-dideazafolic acid (CB3717). Cancer chemother. Pharmacol. 14, 265–271 (1985).

    Article  CAS  Google Scholar 

  6. Montfort, W.R. et al. Structure, multiple site binding, and segmental accomodation in thymidylate synthase on binding dUMP and an anti-folate. Biochemistry 29, 6964–6977 (1990).

    Article  CAS  Google Scholar 

  7. Matthews, D.A., Appelt, K., Oatley, S.J. & Xuong, N.H. Crystal structure of Escherichia coli thymidylate synthase containing bound 5-fluoro-2′-deoxyuridylate and 10-propargyl-5,8-dideazafolate. J. molec. Biol. 214, 923–936 (1990).

    Article  CAS  Google Scholar 

  8. Matthews, D.A. et al. Stereochemical mechanism of action for thymidylate synthase based on the X-ray structure of the covalent inhibitor ternary complex with 5-fluoro-2′-deoxyuridylate and 5,10-methylenetetrahydrofolate. J. molec. Biol. 214, 937–948 (1990).

    Article  CAS  Google Scholar 

  9. Finer-Moore, J.S., Montfort, W.R. & Stroud, R.M. Pairwise specificity and sequential binding in enzyme catalysis: thymidylate synthase. Biochemistry 29, 6977–6986 (1990).

    Article  CAS  Google Scholar 

  10. Fauman, E.B., Rutenber, E.E., Maley, G.F., Maley, F. & Stroud, R.M. Water-mediated substrate/product discrimination: the product complex of thymidylate synthase at 1.83 Å. Biochemistry 33, 1502–1511 (1994).

    Article  CAS  Google Scholar 

  11. Weichsel, A., Montfort, W.R., Ciesla, J. & Maley, F. Promotion of purine nucleotide binding to thymidylate synthase by a potent folate analogue inhibitor, 1843U89. Proc. natn. Acad. Sci. U.S.A. 92, 3493–3497 (1995).

    Article  CAS  Google Scholar 

  12. Perry, K.M. et al. Plastic adaptation toward mutations in proteins: structural comparison of thymidylate synthases. Proteins Struct. Funct. Genet. 8, 315–333 (1990).

    Article  CAS  Google Scholar 

  13. Maley, G.F., Maley, F. & Baugh, C.M. Studies on identifying the folylpolyglutamate binding sites of Lactobacillus casei thymidylate synthetase. Arch. Biochem. Biophys. 216, 551–558 (1982).

    Article  CAS  Google Scholar 

  14. Kamb, A., Finer-Moore, J., Calvert, A.H. & Stroud, R.M. Structural basis for recognition of polyglutamyl folates by thymidylate synthase. Biochemistry 31, 9883–9890 (1992).

    Article  CAS  Google Scholar 

  15. Hughes, L.R. et al. Quinazoline antifolate thymidylate synthase inhibitors: alkyl, substituted alkyl, and aryl substituents in C2 position. J. med. Chem. 33, 3060–3067 (1990).

    Article  CAS  Google Scholar 

  16. Appelt, K. et al. Design of enzyme inhibitors using iterative protein crystallographic analysis. J. med. Chem. 34, 1925–1934 (1991).

    Article  CAS  Google Scholar 

  17. Bystroff, C. & Kraut, J. Crystal structure of unliganded Escherichia coli dihydrofolate reductase. Ligand-induced conformational changes and cooperativity in binding. Biochemistry 30, 2227–2239 (1991).

    Article  CAS  Google Scholar 

  18. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. & Kraut, J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 Å resolution. J. biol. Chem. 257, 13650–13662 (1982).

    CAS  Google Scholar 

  19. DeVos, A.M., Ultsch, M. & Kossiakoff, A.A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312 (1992).

    Article  CAS  Google Scholar 

  20. Fenton, W.A., Kashi, Y., Furtak, K. & Horwich, A.L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371, 614–619 (1994).

    Article  CAS  Google Scholar 

  21. Braig, K. et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371, 578–586 (1994).

    Article  CAS  Google Scholar 

  22. Shoichet, B.K., Stroud, R.M., Santi, D.V., Kuntz, I.D. & Perry, K.M. Structure-based discovery of inhibitors of thymidylate synthase. Science 259, 1445–1450 (1993).

    Article  CAS  Google Scholar 

  23. Verlinde, C.L. & Hol, W.G. Structure-based drug design: progress, results and challenges. Structure 2, 577–587 (1994).

    Article  CAS  Google Scholar 

  24. Maley, G.F. & Maley, F. Properties of a defined mutant of Escherichia coli thymidylate synthase. J. biol. Chem. 263, 7620–7627 (1988).

    CAS  PubMed  Google Scholar 

  25. Messerschmidt, A. & Pflugrath, J.W. Crystal orientation and X-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J. appl. Crystallogr. 20, 306–315 (1987).

    Article  CAS  Google Scholar 

  26. Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. appl. Crystallogr. 21, 916–934 (1988).

    Article  CAS  Google Scholar 

  27. Weissman, L. Strategies for extracting isomorphous and anomalous signals in Computational Crystallography (ed Sayre, D.) 56–63 (Clarendon Press, Oxford, 1982).

    Google Scholar 

  28. Colloborative computational project, Number 4. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D50, 760–763 (1994).

  29. Pflugrath, J.W., Saper, M.A. & Quiocho, F.A. New generation graphics system for macromolecular modeling. Methods and Applications in Crystallographic Computing (eds Hall, S. & Ashida, T.) 404–407 (Clarendon Press, Oxford, 1984).

    Google Scholar 

  30. Jones, A. A Graphics Model Building and Refinement System for Macromolecules. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  31. Insight-II User Guide version 2.2.0 San Diego: Biosym Technologies. (1993).

  32. Furey, W., Wang, B.C. & Sax, M. Crystallographic computing on an array processor. J. appl. Crystallogr. 15, 160–166 (1982).

    Article  CAS  Google Scholar 

  33. Hendrickson, W. Stereochemically restrained refinement of macromolecular structures. Meth. Enzymol. 115, 252–270 (1985).

    Article  CAS  Google Scholar 

  34. Nichols, A., Bharadwaj, R. & Honig, B. GRASP–graphical representation and analysis of surface properties. Biophys. J. 64, A166 (1993).

    Google Scholar 

  35. Carson, M. Ribbon models of macromolecules. J. molec. Graph. 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  36. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weichsel, A., Montfort, W. Ligand-induced distortion of an active site in thymidylate synthase upon binding anticancerdrug 1843U89. Nat Struct Mol Biol 2, 1095–1101 (1995). https://doi.org/10.1038/nsb1295-1095

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1295-1095

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing