Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters

Abstract

Transcriptional activation is often associated with chromatin remodeling. However, little is known about the dynamics of remodeling of nucleosome arrays in vivo. Upon induction of Saccharomyces cerevisiae PHO5, a novel kinetic assay of DNA methyltransferase accessibility showed that nucleosomes adjacent to the histone-free upstream activating sequence (UASp1) are disrupted earlier and at higher frequency in the cell population than are those more distal. Individually cloned molecules, each representing the chromatin state of a full promoter from a single cell, revealed multiple promoter classes with either no remodeling or variable numbers of disrupted nucleosomes. Individual promoters in the remodeled fraction were highly enriched for contiguous blocks of disrupted nucleosomes, the majority of which overlapped the UAS region. These results support a probabilistic model in which chromatin remodeling at PHO5 spreads from sites of transactivator association with DNA and attenuates with distance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: System for in vivo kinetic analysis of PHO5 chromatin remodeling.
Figure 2: MTase accessibility is highest at HSR2-proximal nucleosomes in the population of activated PHO5 promoters.
Figure 3: Nucleosomes adjacent to HSR2 show higher rates of increasing MTase accessibility in the population of activated PHO5 promoters.
Figure 4: Variable numbers of nucleosomes are disrupted at individual PHO5 promoters.
Figure 5: M.HhaI methylates protein-free DNA randomly.
Figure 6: Contiguous nucleosomes are disrupted at the induced PHO5 promoter.

Similar content being viewed by others

References

  1. Owen-Hughes, T. & Workman, J.L. Experimental analysis of chromatin function in transcription control. Crit. Rev. Eukaryot. Gene Expr. 4, 403–441 (1994).

    CAS  PubMed  Google Scholar 

  2. Lemon, B. & Tjian, R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14, 2551–2569 (2000).

    Article  CAS  Google Scholar 

  3. Fry, C.J. & Peterson, C.L. Chromatin remodeling enzymes: who's on first? Curr. Biol. 11, R185–R197 (2001).

    Article  CAS  Google Scholar 

  4. Narlikar, G.J., Fan, H.Y. & Kingston, R.E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  Google Scholar 

  5. Kuo, M., Zhou, J., Jambeck, P., Churchill, M.E.A. & Allis, C.D. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12, 627–639 (1998).

    Article  CAS  Google Scholar 

  6. Agalioti, T. et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell 103, 667–678 (2000).

    Article  CAS  Google Scholar 

  7. Lomvardas, S. & Thanos, D. Modifying gene expression programs by altering core promoter chromatin architecture. Cell 110, 261–271 (2002).

    Article  CAS  Google Scholar 

  8. Vogel, K., Hörz, W. & Hinnen, A. The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions. Mol. Cell. Biol. 9, 2050–2057 (1989).

    Article  CAS  Google Scholar 

  9. Kaffman, A., Herskowitz, I., Tjian, R. & O'Shea, E.K. Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80–PHO85. Science 263, 1153–1156 (1994).

    Article  CAS  Google Scholar 

  10. O'Neill, E.M., Kaffman, A., Jolly, E.R. & O'Shea, E.K. Regulation of PHO4 nuclear localization by the PHO80–PHO85 cyclin-CDK complex. Science 271, 209–212 (1996).

    Article  CAS  Google Scholar 

  11. Kaffman, A., Rank, N.M. & O'Shea, E.K. Phosphorylation regulates association of the transcription factor Pho4 with its import receptor Pse1/Kap121. Genes Dev. 12, 2673–2683 (1998).

    Article  CAS  Google Scholar 

  12. Kaffman, A., Rank, N.M., O'Neill, E.M., Huang, L.S. & O'Shea, E.K. The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396, 482–486 (1998).

    Article  CAS  Google Scholar 

  13. Komeili, A. & O'Shea, E.K. Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284, 977–980 (1999).

    Article  CAS  Google Scholar 

  14. Almer, A., Rudolph, H., Hinnen, A. & Hörz, W. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5, 2689–2696 (1986).

    Article  CAS  Google Scholar 

  15. Schneider, K.R., Smith, R.L. & O'Shea, E.K. Phosphate-regulated inactivation of the kinase PHO80–PHO85 by the CDK inhibitor PHO81. Science 266, 122–126 (1994).

    Article  CAS  Google Scholar 

  16. Steger, D.J., Haswell, E.S., Miller, A.L., Wente, S.R. & O'Shea, E.K. Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114–116 (2002).

    Article  Google Scholar 

  17. Barbaric, S., Reinke, H. & Hörz, W. Multiple mechanistically distinct functions of SAGA at the PHO5 promoter. Mol. Cell. Biol. 23, 3468–3476 (2003).

    Article  CAS  Google Scholar 

  18. Dhasarathy, A. & Kladde, M.P. Promoter occupancy is a major determinant of chromatin remodeling enzyme requirements. Mol. Cell. Biol. 25, 2698–2707 (2005).

    Article  CAS  Google Scholar 

  19. Bergman, L.W. & Kramer, R.A. Modulation of chromatin structure associated with derepression of the acid phosphatase gene of Saccharomyces cerevisiae. J. Biol. Chem. 258, 7223–7227 (1983).

    CAS  PubMed  Google Scholar 

  20. Svaren, J. & Hörz, W. Transcription factors vs. nucleosomes: regulation of the PHO5 promoter in yeast. Trends Biochem. Sci. 22, 93–97 (1997).

    Article  CAS  Google Scholar 

  21. Boeger, H., Griesenbeck, J., Strattan, J.S. & Kornberg, R.D. Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell 11, 1587–1598 (2003).

    Article  CAS  Google Scholar 

  22. Reinke, H. & Hörz, W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol. Cell 11, 1599–1607 (2003).

    Article  CAS  Google Scholar 

  23. Adkins, M.W., Howar, S.R. & Tyler, J.K. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol. Cell 14, 657–666 (2004).

    Article  CAS  Google Scholar 

  24. Boeger, H., Griesenbeck, J., Strattan, J.S. & Kornberg, R.D. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol. Cell 14, 667–673 (2004).

    Article  CAS  Google Scholar 

  25. Nourani, A., Utley, R.T., Allard, S. & Côté, J. Recruitment of the NuA4 complex poises the PHO5 for chromatin remodeling and activation. EMBO J. 23, 2597–2607 (2004).

    Article  CAS  Google Scholar 

  26. Gregory, P.D. et al. Absence of Gcn5 HAT activity defines a novel state in the opening of chromatin at the PHO5 promoter in yeast. Mol. Cell 1, 495–505 (1998).

    Article  CAS  Google Scholar 

  27. Kladde, M.P., Xu, M. & Simpson, R.T. Direct study of DNA-protein interactions in repressed and active chromatin in living cells. EMBO J. 15, 6290–6300 (1996).

    Article  CAS  Google Scholar 

  28. Jessen, W.J. et al. Mapping chromatin structure in vivo using DNA methyltransferases. Methods 33, 68–80 (2004).

    Article  CAS  Google Scholar 

  29. Simpson, R.T. In vivo methods to analyze chromatin structure. Curr. Opin. Genet. Dev. 9, 225–229 (1999).

    Article  CAS  Google Scholar 

  30. Kladde, M.P. & Simpson, R.T. Positioned nucleosomes inhibit Dam methylation in vivo. Proc. Natl. Acad. Sci. USA 91, 1361–1365 (1994).

    Article  CAS  Google Scholar 

  31. Polach, K.J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254, 130–149 (1995).

    Article  CAS  Google Scholar 

  32. Anderson, J.D. & Widom, J. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296, 979–987 (2000).

    Article  CAS  Google Scholar 

  33. Weiss, K. & Simpson, R.T. Cell type-specific chromatin organization of the region that governs directionality of yeast mating type switching. EMBO J. 16, 4352–4360 (1997).

    Article  CAS  Google Scholar 

  34. Ogawa, N. & Oshima, Y. Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 2224–2236 (1990).

    Article  CAS  Google Scholar 

  35. Hirst, K., Fisher, F., McAndrew, P.C. & Goding, C.R. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal. EMBO J. 13, 5410–5420 (1994).

    Article  CAS  Google Scholar 

  36. Barbaric, S., Münsterkötter, M., Svaren, J. & Hörz, W. The homeodomain protein Pho2 and the basic-helix-loop-helix protein Pho4 bind DNA cooperatively at the yeast PHO5 promoter. Nucleic Acids Res. 24, 4479–4486 (1996).

    Article  CAS  Google Scholar 

  37. McAndrew, P.C., Svaren, J., Martin, S.R., Hörz, W. & Goding, C.R. Requirements for chromatin modulation and transcription activation by the Pho4 acidic activation domain. Mol. Cell. Biol. 18, 5818–5827 (1998).

    Article  CAS  Google Scholar 

  38. Proffitt, J.H., Davie, J.R., Swinton, D. & Hattman, S. 5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA. Mol. Cell. Biol. 4, 985–988 (1984).

    Article  CAS  Google Scholar 

  39. Fascher, K.D., Schmitz, J. & Hörz, W. Role of trans-activating proteins in the generation of active chromatin at the PHO5 promoter in S. cerevisiae. EMBO J. 9, 2523–2528 (1990).

    Article  CAS  Google Scholar 

  40. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827–1831 (1992).

    Article  CAS  Google Scholar 

  41. Clark, S.J., Harrison, J., Paul, C.L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997 (1994).

    Article  CAS  Google Scholar 

  42. Aalfs, J.D. & Kingston, R.E. What does 'chromatin remodeling' mean? Trends Biochem. Sci. 25, 548–555 (2000).

    Article  CAS  Google Scholar 

  43. Xu, M., Kladde, M.P., Van Etten, J.L. & Simpson, R.T. Cloning, characterization and expression of the gene coding for cytosine-5-DNA methyltransferase recognizing GpC sites. Nucleic Acids Res. 26, 3961–3966 (1998).

    Article  CAS  Google Scholar 

  44. Hassan, A.H., Neely, K.E. & Workman, J.L. Histone acetyltransferase complexes stabilize Swi/Snf binding to promoter nucleosomes. Cell 104, 817–827 (2001).

    Article  CAS  Google Scholar 

  45. Kladde, M.P. & Simpson, R.T. Rapid detection of functional expression of C-5-DNA methyltransferases in yeast. Nucleic Acids Res. 26, 1354–1355 (1998).

    Article  CAS  Google Scholar 

  46. Raser, J.M. & O'Shea, E.K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004).

    Article  CAS  Google Scholar 

  47. Balasubramanian, B. & Morse, R.H. Binding of Gal4p and bicoid to nucleosomal sites in yeast in the absence of replication. Mol. Cell. Biol. 19, 2977–2985 (1999).

    Article  CAS  Google Scholar 

  48. Voth, W.P., Richards, J.D., Shaw, J.M. & Stillman, D.J. Yeast vectors for integration at the HO locus. Nucleic Acids Res. 29, E59 (2001).

    Article  CAS  Google Scholar 

  49. Neef, D.W. & Kladde, M.P. Polyphosphate loss promotes SNF/SWI- and Gcn5-dependent mitotic induction of PHO5. Mol. Cell. Biol. 23, 3788–3797 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Conard for excellent technical assistance, R. Roberts (NEB) for the M.HhaI gene, R. Morse (Wadsworth Center) for providing the plasmid expressing LexA-ER-VP16, S. Hanes (Wadsworth Center) for the plasmid containing the minimal GAL1 promoter with lexO sites, D. Pettigrew for generous advice and discussion and M. Bryk, S. Dent, W. Hörz and J. Mueller for helpful discussions and critical reading of an earlier version of this manuscript. The work was supported by a grant from the National Cancer Institute of the US National Institutes of Health to M.P.K. and in part by an Advanced Research Program award from the Texas Higher Education Coordinating Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P Kladde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Chromatin structure and induction kinetics of PHO5 and PHO5HhaI promoters are indistinguishable. (PDF 354 kb)

Supplementary Fig. 2

Increased rate of disruption of UAS-adjacent nucleosome in an extended activation time course. (PDF 243 kb)

Supplementary Fig. 3

Pho4-dependent increases in M.HhaI accessibility in populations. (PDF 380 kb)

Supplementary Fig. 4

Associated non-histone factors do not protect against methylation. (PDF 270 kb)

Supplementary Fig. 5

M.HhaI lacks site preference for protein-free PHO5HhaI DNA. (PDF 191 kb)

Supplementary Table 1

Statistical significances of increased M.HhaI accessibility. (PDF 67 kb)

Supplementary Table 2

Additional oligonucleotides used in this study. (PDF 75 kb)

Supplementary Methods

Micrococcal nuclease analysis. (PDF 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jessen, W., Hoose, S., Kilgore, J. et al. Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters. Nat Struct Mol Biol 13, 256–263 (2006). https://doi.org/10.1038/nsmb1062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing