Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clusterin contributes to caspase-3–independent brain injury following neonatal hypoxia-ischemia

Abstract

Clusterin, also known as apolipoprotein J, is a ubiquitously expressed molecule thought to influence a variety of processes including cell death. In the brain, it accumulates in dying neurons following seizures and hypoxic-ischemic (H-I) injury. Despite this, in vivo evidence that clusterin directly influences cell death is lacking. Following neonatal H-I brain injury in mice (a model of cerebral palsy), there was evidence of apoptotic changes (neuronal caspase-3 activation), as well as accumulation of clusterin in dying neurons. Clusterin-deficient mice had 50% less brain injury following neonatal H-I. Surprisingly, the absence of clusterin had no effect on caspase-3 activation, and clusterin accumulation and caspase-3 activation did not colocalize to the same cells. Studies with cultured cortical neurons demonstrated that exogenous purified astrocyte-secreted clusterin exacerbated oxygen/glucose-deprivation–induced necrotic death. These results indicate that clusterin may be a new therapeutic target to modulate non-caspase-dependent neuronal death following acute brain injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caspase-3 activation and clusterin accumulation following neonatal H-I brain injury in P7 C57Bl6 mice.
Figure 2: Decreased brain injury in Clu−/− mice following neonatal H-I.
Figure 3: Clusterin does not influence caspase-3 activation following H-I.
Figure 4: Clusterin potentiates neuronal death induced by oxygen/glucose deprivation (OGD) in cortical cultures.

Similar content being viewed by others

References

  1. Vanucci, R.C. Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr. Res. 27, 317–326 (1990).

    Article  Google Scholar 

  2. Volpe, J.J. Neurology of the Newborn. (W. B. Saunders, Philadelphia, 1995).

    Google Scholar 

  3. Rice, J.E., Vannucci, R.C. & Brierley, J.B. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol. 9, 131–141 (1981).

    Article  Google Scholar 

  4. Cheng, Y. et al. Caspase inhibitor affords neuroprotection with delayed adminstration in a rat model of neonatal hypoxic-ischemic brain injury. J. Clin. Invest. 101, 1992–1999 (1998).

    Article  CAS  Google Scholar 

  5. Pulera, M.R. et al. Apoptosis in a neonatal rat model of cerebral hypoxia-ischemia. Stroke 29, 2622–2629 (1998).

    Article  CAS  Google Scholar 

  6. Parsadanian, A.S., Cheng, Y., Keller-Peck, C.R., Holtzman, D.M. & Snider, W.D. Bcl-XL is an anti-apoptotic regulator for postnatal CNS neurons. J. Neurosci. 18, 1009–1019 (1998).

    Article  CAS  Google Scholar 

  7. Lendon, C.L. et al. No effect of apolipoprotein E on neuronal cell death due to excitotoxic and apoptotic agents in vitro and neonatal hypoxic ischaemia in vivo. Eur. J. Neurosci. 12, 2235–2242 (2000).

    Article  CAS  Google Scholar 

  8. Kissinger, C., Skinner, M.K. & Griswold, M.D. Analysis of Sertoli cell-secreted proteins by 2-dimensional gel electrophoresis. Biol. Reprod. 27, 233–240 (1982).

    Article  CAS  Google Scholar 

  9. Blaschuk, O., Burdzy, K. & Fritz, I.B. Purification and characterization of a cell aggregating factor (clusterin), the major glycoprotein in ram rete testis fluid. J. Biol. Chem. 258, 7714–7720 (1983).

    CAS  PubMed  Google Scholar 

  10. May, P.C. & Finch, C.E. Sulfated glycoprotein 2: new relationships of this multifunctional protein to neurodegeneration. Trends Neurol. Sci. 15, 391–396 (1992).

    Article  CAS  Google Scholar 

  11. Wilson, M.R. & Easterbrook-Smith, S.B. Clusterin is a secreted mammalian chaperone. Trends Biochem. Sci. 25, 95–98 (2000).

    Article  CAS  Google Scholar 

  12. May, P.C. et al. Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer's disease and in response to experimental lesions in rat. Neuron 5, 831–839 (1990).

    Article  CAS  Google Scholar 

  13. Dragunow, M. et al. Clusterin accumulates in dying neurons following status epilepticus. Mol. Brain Res. 32, 279–290 (1995).

    Article  CAS  Google Scholar 

  14. Walton, M. et al. Induction of clusterin in the immature brain following a hypoxic-ischemic injury. Mol. Brain Res. 39, 137–152 (1996).

    Article  CAS  Google Scholar 

  15. Han, B.H. et al. BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol. Dis. 7, 38–53 (2000).

    Article  CAS  Google Scholar 

  16. Pasinetti, G.M., Johnson, S.A., Oda, T., Rozovsky, I. & Finch, C.E. Clusterin (SGP-2): a mulitfunctional glycoprotein with regional expression in astrocytes and neurons of the adult rat brain. J. Comp. Neurol. 339, 387–400 (1994).

    Article  CAS  Google Scholar 

  17. McLaughlin, L. et al. Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis. J. Clin. Invest. 106, 1105–1113 (2000).

    Article  CAS  Google Scholar 

  18. Nakajima, W. et al. Apoptosis has a prolonged role in the neurodegeneration after hypoxia ischemia in the newborn rat. J. Neurosci. 20, 7994–8004 (2000).

    Article  CAS  Google Scholar 

  19. Goldberg, M.P. & Choi, D.W. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J. Neurosci. 13, 3510–3524 (1993).

    Article  CAS  Google Scholar 

  20. LaDu, M.J. et al. Nascent astroctye particles differ from lipoproteins in CSF. J. Neurochem. 70, 2070–2081 (1998).

    Article  CAS  Google Scholar 

  21. Pasinetti, G.M. & Finch, C.E. Sulfated glycoprotein-2 (SGP-2) mRNA is expressed in rat striatal astrocytes following ibotenic acid lesions. Neurosci. Lett. 130, 1–4 (1991).

    Article  CAS  Google Scholar 

  22. During, M.J. et al. An oral vaccine against NMDAR1 with efficacy in experimental stroke and epilepsy. Science 287, 1453–1460 (2000).

    Article  CAS  Google Scholar 

  23. Ghiso, J. et al. The cerebrospinal-fluid form of Alzheimer's amyloid beta is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem. J. 293, 27–30 (1993).

    Article  CAS  Google Scholar 

  24. Lambert, M.P. et al. Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453 (1998).

    Article  CAS  Google Scholar 

  25. Kounnas, M.Z. et al. Identification of glycoprotein 330 as an endocytic receptor for apolipoprotein J/clusterin. J. Biol. Chem. 270, 13070–13075 (1995).

    Article  CAS  Google Scholar 

  26. Kounnas, M.Z., Haudenschild, C.C., Strickland, D.K. & Argraves, W.S. Immunological localization of glycoprotein 330, low density lipoprotein receptor related protein and 39 kDa receptor associated protein in embryonic mouse tissues. In Vivo 8, 343–351 (1994).

    CAS  PubMed  Google Scholar 

  27. Sensibar, J.A. et al. Prevention of cell death induced by tumor necrosis factor α in LNCaP cells by overexpression of sulfated glycoprotein-2 (clusterin). Cancer Res. 55, 2431–2437 (1995).

    CAS  PubMed  Google Scholar 

  28. Humphreys, D., Hochgrebe, T.T., Easterbrook-Smith, S.B., Tenniswood, M.P. & Wilson, M.R. Effects of clusterin overexpression on TNFα- and TGFβ-mediated death of L929 cells. Biochem. 36, 15233–15243 (1997).

    Article  CAS  Google Scholar 

  29. Schwochau, G.B., Nath, K.A. & Rosenberg, M.E. Clusterin protects against oxidative stress in vitro through aggregative and nonaggregative properties. Kidney Int. 53, 1647–1653 (1998).

    Article  CAS  Google Scholar 

  30. Sintich, S.M. et al. Cytotoxic sensitivity to tumor necrosis factor-α in PC3 and LNCaP prostatic cancer cells is regulated by extracellular levels of SGP-2 (clusterin). Prostate 39, 87–93 (1999).

    Article  CAS  Google Scholar 

  31. McDonald, J.W., Silverstein, F.S. & Johnston, M.V. MK-801 protects the neonatal brain from hypoxic-ischemic damage. Eur. J. Pharmacol. 140, 359–361 (1987).

    Article  CAS  Google Scholar 

  32. Boggs, L.N. et al. Clusterin (apoJ) protects against in vitro amyloid-β(1-40) neurotoxicity. J. Neurochem. 67, 1324–1327 (1996).

    Article  CAS  Google Scholar 

  33. Lakins, J. et al. Clusterin biogenesis is altered during apoptosis in the regressing rat ventral prostate. J. Biol. Chem. 273, 27887–27895 (1998).

    Article  CAS  Google Scholar 

  34. Yang, C.-R. et al. Nuclear clusterin/XIP8, an x-ray-induced Ku70-binding protein that signals cell death. Proc. Natl. Acad. Sci. USA 97, 5907–5912 (2000).

    Article  CAS  Google Scholar 

  35. Shull, M.M. et al. Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  Google Scholar 

  36. Plummer, K.L., Manning, K.A., Levey, A.I., Rees, H.D. & Uhlrich, D.J. Muscarinic receptor subtypes in the lateral geniculate nucleus: a light and electron microscopic analysis. J. Comp. Neurol. 404, 408–425 (1999).

    Article  CAS  Google Scholar 

  37. DeMattos, R.B., Curtiss, L.K. & Williams, D.L. A minimally lipidated form of cell-derived apolipoprotein E exhibits isoform-specific stimulation of neurite outgrowth in the absence of exogenous lipids or lipoproteins. J. Biol. Chem. 273, 4206–4212 (1998).

    Article  CAS  Google Scholar 

  38. Dugan, L.L. et al. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-d-aspartate. J. Neurosci. 15, 6377–6388 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Parsadanian for technical assistance. This work was supported by NIH grants NS35902, AG11355, and AG05681 to D.M.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Holtzman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, B., DeMattos, R., Dugan, L. et al. Clusterin contributes to caspase-3–independent brain injury following neonatal hypoxia-ischemia. Nat Med 7, 338–343 (2001). https://doi.org/10.1038/85487

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85487

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing