Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cyclic AMP-dependent protein kinases from normal and SV40-transformed 3T3 cells

Abstract

THE apparent molecular mechanism by which cyclic AMP regulates eukaryotic physiology is through the activation of cyclic AMP-dependent protein kinase enzymes1. Two cytosolic protein kinase isozymes, called types I and II2, have been described in mammalian tissues. They differ in their charge2, dissociability by salt2, capacity to undergo an autophosphorylation reaction3 and in their antigenic properties4. Evidence suggests that cyclic AMP regulates cell division. Intracellular levels of cyclic AMP are higher in normal than in transformed cells5,6, and exogenous addition of cyclic AMP analogues to the culture medium inhibits the growth of transformed cells7. Cyclic AMP levels8, protein kinase specific activity9, and the relative amounts of types I and II isozymes10 vary during the cell cycle. A genetic lesion in lymphoma cells making them insensitive to cyclic AMP may be due to a defective protein kinase enzyme11. We report here that cytosol from SV40-transformed 3T3 cells contains a type I protein kinase not found in BALB 3T3 cytosol. Chromatographic separation of these enzymes indicates that this isozymic difference is the result of an additional protein kinase regulatory subunit in SV3T3 cytosol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kuo, J. R., and Greengard, P., Proc. natn. Acad. Sci. U.S.A., 64. 1349 (1969).

    Article  ADS  CAS  Google Scholar 

  2. Corbin, J. D., Keely, S. L., and Park, C. R., J. biol. Chem., 250, 218 (1975).

    CAS  Google Scholar 

  3. Hofmann, F., Beavo, J. A., Bechtel, P. J., and Krebs, E. G., J. biol. Chem., 250. 7795 (1975).

    CAS  PubMed  Google Scholar 

  4. Fleischer, N., Rosen, O. M., and Reichlin, M., Proc. natn. Acad. Sci. U.S.A. 73, 54 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Sheppard, J. R., Nature, new Biol., 236, 14 (1972).

    Article  CAS  Google Scholar 

  6. Otten, J., Johnson, G., and Pastan, I., J. biol. Chem., 247, 7982 (1972).

    Google Scholar 

  7. Sheppard, J. R., Proc. natn. Acad. Sci. U.S.A., 68, 1316 (1971).

    Article  ADS  CAS  Google Scholar 

  8. Sheppard, J. R., and Prescott, D. M., Expl Cell Res., 75, 293 (1972).

    Article  CAS  Google Scholar 

  9. Kuehn, G. D., Biochem. biophys. Res. Commun., 49, 414 (1972).

    Article  CAS  Google Scholar 

  10. Costa, M., Gerner, E. W., and Russell, D. H., J. biol. Chem., 251, 3313 (1976).

    CAS  PubMed  Google Scholar 

  11. Insel, P. A., Bourne, H. R., Coffino, P., and Tomkins, G. M., Science, 190, 896 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Gilman, A. G., Proc. natn. Acad. Sci. U.S.A., 67, 305 (1970).

    Article  ADS  CAS  Google Scholar 

  13. Corbin, J. D., and Reimann, E. M., in Methods in Enzymology, 38, (edit. by Hardman, J. G., and O'Malley, B. W.), 287 (Academic, New York, 1974).

    Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. C., and Randall, R. J., J. biol. Chem., 193, 265 (1951).

    CAS  Google Scholar 

  15. Scatchard, G., Ann. N. Y. Acad. Sci., 55, 660 (1949).

    Article  ADS  Google Scholar 

  16. MacKenzie III, C. W., and Stellwagen, R. H., J. biol. Chem., 249, 5755 (1974).

    CAS  PubMed  Google Scholar 

  17. Post, R. W., and Sen, A. K., in Methods in Enzymology, 10, (edit. by Estabrook, R. W., and Pullman, M. E.), 773–776 (Academic, New York, 1967).

    Google Scholar 

  18. Troy, F., Vijay, I. K., and Kawakami, T. G., Biochem. biophys. Res. Commun., 52 150 (1973).

    Article  CAS  Google Scholar 

  19. Simontov, R., and Sachs, L., Eur. J. Biochem., 59, 89 (1975).

    Article  Google Scholar 

  20. Granner, D. k., Archs Biochem. Biophys., 165, 359 (1974).

    Article  CAS  Google Scholar 

  21. Li, A. P., kawashima, K., and Hsie, A. W., Biochem. biophys Res, Commun., 64, 507 (1975).

    Article  CAS  Google Scholar 

  22. Strand, M., and August, J. T., Nature new Biol., 233, 137 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GHARRETT, A., SHEPPARD, J. & MALKINSON, A. Cyclic AMP-dependent protein kinases from normal and SV40-transformed 3T3 cells. Nature 264, 673–675 (1976). https://doi.org/10.1038/264673a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/264673a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing