Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Growth regulation of cells grown in suspension culture

Abstract

VARIOUS aspects of a cell's growth cycle can be manipulated in tissue culture. For example, the initiation of DNA synthesis and, in some cases, culture growth, can be enhanced by serum1 and platelet2 components, polypeptides purified from growth-conditioned medium3 and urine4, insulin5, corticosteroids6, prostaglandins7, cyclic nucleotides (see, for example, ref. 8) and proteolytic enzymes9. In addition, at least three purified proteins can initiate DNA synthesis in fibroblast-like cells—nerve growth factor10, epidermal growth factor11 and fibroblast growth factor12,13. Disturbance of the culture medium directly over the cultured cells also induces DNA synthesis14. Fibroblast-like cells have been used in most of these studies, and they grow tightly associated with the culture dish and are strongly anchorage dependent for division15,16. Given the strong anchorage dependence of the test cells, two alternatives could account for the induction of DNA synthesis and growth by the diversity of conditions and “factors” outlined above. The first would ascribe the effects of these compounds to interactions on the cell surface with a suitable receptor. These are hormone-like interactions, thought to be exemplified by compounds such as insulin and purified growth factors1. The second alternative represents interactions which function directly through alterations of cell anchorage. For example, the growth stimulating effects of the proteases are presumably affected by modification of the cell–substratum (anchorage) interaction17. To distinguish between these two alternatives, it should be sufficient to assay the effects of serum and a purified growth factor on the initiation of DNA synthesis in an anchorage-dependent cell line, and on a variant which grows in suspension culture. If serum and the growth factor were equally effective in both cell lines, then a disturbance in anchorage could not account for the mitogenic activity, ruling out the second alternative. The first, hormone-like, mechanism, however, would be excluded if the growth factor was unable to induce DNA synthesis in the cells grown in suspension. The following experiments support this latter possibility by showing that fibroblast growth factor12,13 does not affect the growth of myoblast cells grown in suspension culture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Holley, R. W., Nature, 258, 487–490 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Kohler, N., and Lipton, A., Expl Cell Res., 87, 297–301 (1974).

    Article  CAS  Google Scholar 

  3. Smith, G. L., and Temin, H. M., J. Cell Physiol., 84, 181–192 (1974).

    Article  CAS  Google Scholar 

  4. Cohen, S., and Carpenter, G., Proc. natn. Acad. Sci. U.S.A., 72, 1317–1321 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Yarnell, M. M., and Schnebli, H. P., J. Cell Sci., 16, 181–189 (1974).

    CAS  PubMed  Google Scholar 

  6. Thrash, C. R., and Cunningham, D. D., Nature, 242, 399–401 (1973).

    Article  ADS  CAS  Google Scholar 

  7. Jimenez de Asua, L., Clingan, D., and Rudland, P. S., Proc. natn. Acad. Sci. U.S.A., 72, 2724–2728 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Seifert, W. E., and Rudland, P. S., Nature, 248, 138–140 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Sefton, B., and Rubin, H., Nature, 227, 843–844 (1970).

    Article  ADS  CAS  Google Scholar 

  10. Greene, L. A., Tomita, J. T., and Varon, S., Expl Cell Res., 64, 387–395 (1971).

    Article  CAS  Google Scholar 

  11. Rose, S. P., Pruss, R. M., and Herschman, H. R., J. Cell Physiol., 86, 593–598 (1975).

    Article  Google Scholar 

  12. Armelin, H. A., Proc. natn. Acad. Sci. U.S.A., 70, 2720–2706 (1973).

  13. Gospodorowicz, D., Nature, 249, 123–127 (1974).

    Article  ADS  Google Scholar 

  14. Stoker, M. G. P., Nature, 246, 200–203 (1973).

    Article  ADS  CAS  Google Scholar 

  15. Shin, S., Freedman, V. H., Risser, R., and Pollack, R., Proc. natn. Acad. Sci. U.S.A., 72, 4435–4439 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Otsuka, H., and Moskowitz, M., J. Cell Physiol., 86, 379–388 (1975).

    Article  CAS  Google Scholar 

  17. Pollack, R., and Rifkin, D., Cell, 6, 495–560 (1975).

    Article  Google Scholar 

  18. Yaffe, D., Proc. natn. Acad. Sci. U.S.A., 61, 477–481 (1968).

    Article  ADS  CAS  Google Scholar 

  19. Tarikas, H., and Schubert, D., Proc. natn. Acad. Sci. U.S.A., 71, 2377–2381 (1974).

    Article  ADS  CAS  Google Scholar 

  20. Holley, R. W., and Kiernan, J. A., Proc. natn. Acad. Sci. U.S.A., 71, 2908–2912 (1974).

    Article  ADS  CAS  Google Scholar 

  21. Gospodorowicz, D., J. biol. Chem., 250, 2515–2522 (1975).

    Google Scholar 

  22. Huang, D., and Cuatrecasas, P., J. biol. Chem., 250, 8251–8259 (1975).

    CAS  PubMed  Google Scholar 

  23. Blumberg, P., and Robbins, P., Cell, 6, 137–147 (1975).

    Article  CAS  Google Scholar 

  24. Rubin, H., Proc. natn. Acad. Sci. U.S.A., 72, 1676–1680 (1975).

    Article  ADS  CAS  Google Scholar 

  25. Schubert, D., Humphreys, S., de Vitry, F., and Jacob, F., Devl Biol., 25, 514–522 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SCHUBERT, D., LACORBIERE, M. & WATSON, J. Growth regulation of cells grown in suspension culture. Nature 264, 266–267 (1976). https://doi.org/10.1038/264266a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/264266a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing