Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Partial order in the non-Fermi-liquid phase of MnSi

Abstract

Only a few metallic phases have been identified in pure crystalline materials. These include normal, ferromagnetic and antiferromagnetic metals, systems with spin and charge density wave order, and superconductors. Fermi-liquid theory provides a basis for the description of all of these phases. It has been suggested that non-Fermi-liquid phases of metals may exist in some heavy-fermion compounds1,2 and oxide materials3,4,5,6, but the discovery of a characteristic microscopic signature of such phases presents a major challenge. The transition-metal compound MnSi above a certain pressure (pc = 14.6 kbar) provides what may be the cleanest example of an extended non-Fermi-liquid phase in a three-dimensional metal7,8,9. The bulk properties of MnSi suggest that long-range magnetic order is suppressed at pc (refs 7–12). Here we report neutron diffraction measurements of MnSi, revealing that sizeable quasi-static magnetic moments survive far into the non-Fermi-liquid phase. These moments are organized in an unusual pattern with partial long-range order. Our observation supports the existence of novel metallic phases with partial ordering of the conduction electrons (reminiscent of liquid crystals), as proposed for the high-temperature superconductors4,5,6 and heavy-fermion compounds13.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic temperature T versus pressure p phase diagram of MnSi, and qualitative illustration of the scattering intensity characteristic of the magnetic state.
Figure 2: Longitudinal (L) and transverse (T) scans of the magnetic scattering intensity with respect to (110).
Figure 3: Temperature dependence of the longitudinal peak intensity for scans along (111) and (110) at various pressures.

Similar content being viewed by others

References

  1. Chandra, P., Coleman, P., Mydosh, J. A. & Tripathi, V. Hidden orbital order in the heavy fermion metal URu2Si2 . Nature 417, 831–834 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Grosche, F. M. G. et al. Anomalous low temperature states in CeNi2Ge2 and CePd2Si2 . J. Phys. Condens. Matter 12, L533–L540 (2000)

    Article  CAS  Google Scholar 

  3. Dagotto, E., Hotta, T. & Moreo, A. Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep. 344, 1–153 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Kivelson, S. A. et al. How to detect fluctuating order in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Sachdev, S. Order and quantum phase transitions in the cuprate superconductors. Rev. Mod. Phys. 75, 913–932 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Zaanen, J. et al. The geometric order of stripes and Luttinger liquids. Phil. Mag. B 81, 1485–1531 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Pfleiderer, C., Julian, S. R. & Lonzarich, G. G. Non-Fermi liquid nature of the normal state of itinerant-electron ferromagnets. Nature 414, 427–430 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Pfleiderer, C. The non-Fermi liquid puzzle of MnSi at high pressure. Physica B 328, 100–104 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Doiron-Leyraud, N. et al. Fermi-liquid breakdown in the paramagnetic phase of a pure metal. Nature 425, 595–599 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Pfleiderer, C., McMullan, G. J., Julian, S. R. & Lonzarich, G. G. Magnetic quantum phase transition in MnSi under hydrostatic pressure. Phys. Rev. B 55, 8330–8338 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Thessieu, C. et al. Field dependence of the magnetic quantum phase transition in MnSi. J. Phys. Condens. Matter 9, 6677–6687 (1997)

    Article  ADS  CAS  Google Scholar 

  12. Koyama, K., Goto, T., Kanomata, T. & Note, R. Observation of an itinerant metamagnetic transition in MnSi under high pressure. Phys. Rev. B 62, 986–991 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Barzykin, V. & Gorkov, L. P. Possibility of nontrivial magnetic order by elastic neutron scattering. Phys. Rev. Lett. 70, 2479–2482 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Fawcett, E., Maita, J. P. & Wernick, J. H. Magnetoelastic and thermal properties of MnSi. Int. J. Magn. 1, 29–34 (1970)

    CAS  Google Scholar 

  15. Bloch, D., Voiron, J., Jaccarino, V. & Wernick, J. H. The high field–high pressure magnetic properties of MnSi. Phys. Lett. A 51, 259–291 (1975)

    Article  ADS  Google Scholar 

  16. Ishikawa, Y. et al. Paramagnetic spin fluctuations in the weak itinerant-electron ferromagnet MnSi. Phys. Rev. B 31, 5884–5893 (1985)

    Article  ADS  CAS  Google Scholar 

  17. Yasuoka, H., Jaccarion, V., Sherwood, R. C. & Wernick, J. H. NMR and susceptibility studies of MnSi above Tc . J. Phys. Soc. Jpn 44, 842–849 (1978)

    Article  ADS  CAS  Google Scholar 

  18. Taillefer, L., Lonzarich, G. G. & Strange, P. The band magnetism of MnSi. J. Magn. Magn. Mater. 54–57, 957–958 (1986)

    Article  ADS  Google Scholar 

  19. Ishikawa, Y. & Arai, M. Magnetic phase diagram of MnSi near critical temperature studied by neutron small angle scattering. J. Phys. Soc. Jpn 53, 2726–2733 (1984)

    Article  ADS  CAS  Google Scholar 

  20. Lebech, B. in Recent Advances in Magnetism of Transition Metal Compounds (eds Kotani, A. & Suzuki, N.) 167–178 (World Scientific, Singapore, 1993)

    Book  Google Scholar 

  21. Mena, F. P. et al. Heavy carriers and non-Drude optical conductivity in MnSi. Phys. Rev. B 67, 241101(R) (2003)

  22. Bak, P. & Jensen, M. H. Theory of helical magnetic structures and phase transitions in MnSi and FeGe. J. Phys. C 13, L881–L885 (1980)

    Article  ADS  CAS  Google Scholar 

  23. Nakanishi, O., Yanase, A., Hasegawa, A. & Kataoka, M. The origin of the helical spin density wave in MnSi. Solid State Commun. 35, 995–998 (1980)

    Article  ADS  CAS  Google Scholar 

  24. Thessieu, C. et al. Pressure effect on MnSi: An NMR study. J. Magn. Magn. Mater. 177–181, 609–610 (1998)

    Article  ADS  Google Scholar 

  25. Lammert, P. E., Rokhsar, D. S. & Toner, J. Topology and nematic ordering. Phys. Rev. Lett. 70, 1650–1653 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Wright, D. C. & Mermin, N. D. Crystalline liquids: The blue phases. Rev. Mod. Phys. 61, 385–432 (1989)

    Article  ADS  CAS  Google Scholar 

  27. Koistinen, E. P. & Keyes, P. H. Light-scattering study of the structures of blue phase III. Phys. Rev. Lett. 74, 4460–4463 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Vonsovskij, S. V. Magnetism Vol. 2, Part 3 (Wiley, New York, 1974)

    Google Scholar 

  29. Mydosh, J. Spin Glasses: An Experimental Introduction (Taylor and Francis, London, 1993)

    Google Scholar 

  30. Huxley, A. et al. Co-existence of superconductivity and ferromagnetism in actinide compounds. J. Phys. Condens. Matter 15, S1945–S1956 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with P. Böni, A. N. Bogdanov, E. Dormann, B. Fåk, P. C. Howell, B. Keimer, B. Lebech, G. G. Lonzarich, I. Mazin, A. J. Millis, K.-H. Müller, J. Mydosh, J. Kübler, B. Rössli, S. Sachdev, S. S. Saxena, J. Schmalian, Q. Si, M. Turlakov, U. Rössler, M. Vojta, P. Wölfle and J. Zaanen. Help with the experiments from M. Uhlarz, B. Hennion, J. Haug, E. Garcia-Matres and the staff of the Laboratoire Léon Brillouin (Saclay) and the Hahn-Meitner Institut (Berlin), respectively, is also acknowledged. This work was supported by the Deutsche Forschungsgemeinschaft, the Helmholtz Gemeinschaft and the European Science Foundation under FERLIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pfleiderer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfleiderer, C., Reznik, D., Pintschovius, L. et al. Partial order in the non-Fermi-liquid phase of MnSi. Nature 427, 227–231 (2004). https://doi.org/10.1038/nature02232

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02232

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing