Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synaptic strengthening through activation of Ca2+ -permeable AMPA receptors

Abstract

POSTSYNAPTIC Ca2+ elevation during synaptic transmission is an important trigger for short- and long-term changes in synaptic strength in the vertebrate central nervous system1. The AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate) receptors, a subfamily of glutamate receptors, mediate much of the excitatory synaptic transmission in the brain and spinal cord2. It has been shown that a subtype of the AMPA receptor is Ca2+-permeable3–6 and is present in subpopulations of neurons7–12. When synaptically localized13, these receptors should mediate postsynaptic Ca2+ influx, providing a trigger for changes in synaptic strength. Here we show that Ca2+-permeable AMPA receptors are synaptically localized on a subpopulation of dorsal horn neurons, that they provide a synaptically gated route of Ca2+ entry, and that activation of these receptors strengthens synaptic transmission mediated by AMPA receptors. This pathway for postsynaptic Ca2+ influx may provide a new form of activity-dependent modulation of synaptic strength.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Jonas, P. & Spruston, N. Curr. Opin. Neurobiol. 4, 366–372 (1994).

    Article  CAS  Google Scholar 

  3. Iino, M., Ozawa, S. & Tsuzuki, K. J. Physiol. 424, 151–165 (1990).

    Article  CAS  Google Scholar 

  4. Hollmann, M., Hartley, M. & Heinemann, S. Science 252, 851–853 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Burnashev, N., Monyer, H., Seeburg, P. H. & Sakmann, B. Neuron 8, 189–198 (1992).

    Article  CAS  Google Scholar 

  6. Jonas, P. & Burnashev, N. Neuron 15, 987–990 (1995).

    Article  CAS  Google Scholar 

  7. Jonas, P., Racca, C., Sakmann, B., Seegurg, P. H. & Monyer, H. Neuron 12, 1281–1289 (1994).

    Article  CAS  Google Scholar 

  8. Lerma, J., Morales, M., Ibarz, J. M. & Somohano, F. Eur. J. Neurosci. 6, 1080–1088 (1994).

    Article  CAS  Google Scholar 

  9. Geiger, J. R. P. et al. Neuron 15, 193–204 (1995).

    Article  CAS  Google Scholar 

  10. Reichling, D. B. & MacDermott, A. B. J. Physiol. 469, 67–88 (1993).

    Article  CAS  Google Scholar 

  11. Bochet, P. et al. Neuron 12, 383–388 (1994).

    Article  CAS  Google Scholar 

  12. Yin, H., Turetsky, D., Choi, D. W. & Weiss, J. H. Neurobiol. Dis. 1, 43–49 (1994).

    Article  CAS  Google Scholar 

  13. Otis, T. S., Raman, I. M. & Trussell, L. O. J. Physiol. 482, 309–315 (1995).

    Article  CAS  Google Scholar 

  14. Fatt, P. & Katz, B. J. Physiol. 117, 109–128 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bekkers, J. M. & Stevens, C. F. Nature 341, 230–233 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Malgaroli, A. & Tsien, R. W. Nature 357, 134–139 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Manabe, T., Renner, P. & Nicoll, R. A. Nature 355, 50–55 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Murphy, T. H., Baraban, J. M. & Wier, W. G. Neuron 15, 159–168 (1995).

    Article  CAS  Google Scholar 

  19. Abe, T., Kawai, N. & Miwa, A. J. Physiol. 339, 243–252 (1982).

    Article  Google Scholar 

  20. Blaschke, M. et al. Proc. natn. Acad. Sci. U.S.A. 90, 6528–6532 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Goldstein, P. A., Lee, C. J. & MacDermott, A. B. J. Neurophysiol. 73, 2522–2534 (1995).

    Article  CAS  Google Scholar 

  22. Wyllie, D. J. A., Manabe, T. & Nicoll, R. A. Neuron 12, 127–138 (1994).

    Article  CAS  Google Scholar 

  23. Kullmann, D. M., Perkel, D. J., Manabe, T. & Nicoll, R. A. Neuron 9, 1175–1183 (1992).

    Article  CAS  Google Scholar 

  24. Schneggenburger, R., Zhou, Z., Konnerth, A. & Neher, E. Neuron 11, 133–143 (1993).

    Article  CAS  Google Scholar 

  25. Mayer, M. L., MacDermott, A. B., Westbrook, G. L., Smith, S. J. & Barker, J. L. J. Neurosci. 7, 3230–3244 (1987).

    Article  CAS  Google Scholar 

  26. Kyrozis, A., Goldstein, P. A., Heath, M. J. S. & MacDermott, A. B. J. Physiol. 485, 373–381 (1995).

    Article  CAS  Google Scholar 

  27. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

  28. Smith, S. J., Osses, L. R. & Augustine, G. J. in Calcium and Ion Channel Modulation (eds Grinnell, A. D., Armstrong, D. & Jackson, M. B.) 147–155 (Plenum, Newyork, 1988).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, J., Albuquerque, C., Lee, C. et al. Synaptic strengthening through activation of Ca2+ -permeable AMPA receptors. Nature 381, 793–796 (1996). https://doi.org/10.1038/381793a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381793a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing