Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical conductivity of the Earth's lower mantle

Abstract

THE electrical conductivity of the Earth's lower mantle constrains both the propagation to the surface of geomagnetic disturbances in the core and the nature of core–mantle coupling. Extrapolations of laboratory measurements on materials representative of the lower mantle agree weakly1,2 or not at all3,4 with recent geophysical models5–8 of lower-mantle electrical conductivity based on variations of magnetic and electrical fields measured at the Earth's surface. Here we report d.c. conductivity measurements on samples with compositions approximating that of the lower mantle, at pressures of 1.2 to 40 GPa and temperatures in the range 20 to 400 °C. Our results agree with some of those obtained previously1,2. But in contrast to this previous work, we extrapolate the results to lower-mantle conditions by adopting a functional form for the conductivity that incorporates the effect of pressure as well as temperature. The resulting estimates of conductivity are in agreement with the geophysical determinations5–8. We find that, because of a very weak dependence on temperature, pressure and composition, the conductivity is likely to vary by no more than about a factor of five across the entire lower mantle, reaching a maximum value of only 3–10 S m−1. Lateral temperature variations as large as a few hundred degrees will therefore be hard to detect geophysically, and the compositionally distinct D″ layer at the base of the lower mantle remains the only possible location for a highly conducting layer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Peyronneau, J. & Poirier, J.-P. Nature 342, 537–539 (1989).

    Article  ADS  Google Scholar 

  2. Poirier, J.-P. & Peyronneau, J. in High—Pressure Research: Application to Earth and Planetary Sciences Geophys. monogr. No. 67 (eds Syono, Y. & Manghnani, M. H. 77–87 (Am. geophys. Un., Washington DC, 1992).

    Google Scholar 

  3. Li, X. & Jeanloz, R. J. geophys. Res. 96, 6113–6120 (1991).

    Article  ADS  Google Scholar 

  4. Li, X. & Jeanloz, R. J. geophys. Res. 95, 5067–5078 (1990).

    Article  ADS  Google Scholar 

  5. Egbert, G. D. & Booker, J. R. J. geophys. Res. 97, 15099–15112 (1992).

    Article  ADS  Google Scholar 

  6. Tarits, P. & Wahr, J. EOS 73, 523 (1992).

    Google Scholar 

  7. Constable, S. J. Geomag. Geoelectr. 45, 1–22 (1993).

    Article  Google Scholar 

  8. Schultz, A., Kurtz, R. D., Chave, A. D. & Jones, A. G. Geophys. Res. Lett. (in the press).

  9. Dziewonski, A. M. & Anderson, D. L. Phys. Earth planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  10. Shankland, T. J. & Brown, J. M. Phys. Earth planet. Inter. 38, 51–58 (1985).

    Article  ADS  Google Scholar 

  11. Hirsch, L. M. & Shankland, T. J. geophys. Res. Lett. 18, 1305–1308 (1993).

    Article  ADS  Google Scholar 

  12. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vettering, W. T. Numerical Recipes 498–538 (Cambridge Univ. Press, 1986).

    Google Scholar 

  13. Li, X., Ming, L.-C., Manghnani, M. H., Wang, Y. & Jeanloz, R. J. geophys. Res. 98, 501–508 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Hirsch, L. M. & Shankland, T. J. geophys. Res. Lett. 18, 1305–1308 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Gautason, B. & Muehlenbachs, K. Science 260, 518–521 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Misener, D. J. in Geochemical Transport and Kinetics (eds Hofmann, A. W., Giletti, B. J., Yoder, H. S. Jr. & Yund, R. A.) 117–129 (Carnegie Instn of Wash., Washington DC, 1974).

    Google Scholar 

  17. Guyot, F., Madon, M., Poirier, J.-P. & Peyronneau, J. Earth planet. Sci. Lett. 90, 52–64 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Wood, B. J. & Nell, J. Nature 351, 309–311 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Li, X. & Jeanloz, R. J. geophys. Res. 95, 21609–21612 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Constable, S., Shankland, T. J. & Duba, A. G. J. geophys. Res. 97, 3397–3404 (1992).

    Article  ADS  Google Scholar 

  21. Achache, J., LeMouël, J. L. & Courtillot, V. Geophys. J. R. ast. Soc. 65, 579–601 (1981).

    Article  ADS  Google Scholar 

  22. Lay, T. EOS 70, 49–59 (1989)

    Article  ADS  Google Scholar 

  23. Poirier, J.-P. & le Mouël, J. L. Phys. Earth planet. Inter. 73, 29–37 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankland, T., Peyronneau, J. & Poirier, JP. Electrical conductivity of the Earth's lower mantle. Nature 366, 453–455 (1993). https://doi.org/10.1038/366453a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366453a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing