Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surficial textures of the Galilean satellites

Abstract

Knowledge of the textural characteristics of planetary surfaces is one of the objectives of remote sensing observations. The comparison of accurate photometric measurements with scattering models yields estimates of the compaction state of the optically active portion of the regoliths of airless bodies. We have analysed as a function of solar phase angle the observations of the Galilean satellites of Jupiter obtained with the International Ultraviolet Explorer1,2. By fitting the measurements to a shadowing model3, comparative descriptions of the microtextures of the optically active portion of the surfaces of the satellites are derived. Important differences among the satellites, and between leading and trailing hemispheres of individual satellites, result from the different processes of meteoritic bombardment, magnetospheric interaction and geological resurfacing that operate in the Jovian system. lo and Callisto have the most tenuous upper regoliths, whereas the surface of the leading side of Europa is the most compact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nelson, R. M. et al. Bull. Am. astr. Soc. 16, 684–685 (1984).

    ADS  Google Scholar 

  2. Nelson, R. M. et al. Icarus 72, 358–380 (1987).

    Article  ADS  Google Scholar 

  3. Irvine, W. M. J. geophys. Res. 71, 2931–2937 (1966).

    Article  ADS  Google Scholar 

  4. Hapke, B. J. Geophys. Res. 86, 3039–3054 (1981).

    Article  ADS  Google Scholar 

  5. Hapke, B. Icarus 59, 41–59 (1984).

    Article  ADS  Google Scholar 

  6. Hapke, B. Icarus 67, 264–280 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Goguen, J. D. thesis, Cornell Univ. (1981).

  8. Lumme, K. & Bowell, E. Astr. J. 86, 1694–1704 (1981).

    Article  ADS  Google Scholar 

  9. Veverka, J., Goguen, J., Young, S. & Elliot, J. Icarus 34, 406–414 (1978).

    Article  ADS  Google Scholar 

  10. Buratti, B. Icarus 59, 392–405 (1984).

    Article  ADS  Google Scholar 

  11. Buratti, B. Icarus 61, 208–217 (1985).

    Article  ADS  Google Scholar 

  12. Veverka, J. in Planetary Satellites (ed. Burns, J.) 171–209 (University of Arizona Press, Tucson, 1977).

    Google Scholar 

  13. Morrison, D. & Morrison, N. in Planetary Satellites (ed. Burns, J.) 363–378 (University of Arizona Press, Tucson, 1977).

    Google Scholar 

  14. Kawata, Y. & Irvine, W. in Exploration of the Planetary System IAU Symp. 65 (eds Woszczyk, A. & Iwaniszewska, C.) 441–464 (Reidel, Dordrecht, 1974).

    Book  Google Scholar 

  15. Simonelli, D. & Veverka, J. Icarus 68, 503–521 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Pang, K. D., Lumme, D. & Bowell, E. Proc. lunar planet. Sci. Cont. 12B, 1543–1553 (1981).

    ADS  Google Scholar 

  17. Hansen, O. L. Icarus 18, 237–246 (1973).

    Article  ADS  Google Scholar 

  18. Matson, D. L. & Nash, D. B. J. geophys. Res. 88, 4771–4783 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Millis, R. T. & Thompson, D. T. Icarus 36, 408–419 (1975).

    Article  ADS  Google Scholar 

  20. Buratti, B. & Veverka, J. Icarus 55, 93–110 (1983).

    Article  ADS  Google Scholar 

  21. Clark, R. N., Fanale, F. P. & Zent, A. Icarus 56, 233–245 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Clark, R. N. & Lucey, P. B. J geophys. Res. 89, 6341–6348 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Shoemaker, E. M. & Wolfe, R. F. in Satellites of Jupiter (ed. Morrison, D.) 277–339 (University of Arizona Press, Tucson, 1982).

    Google Scholar 

  24. Morrison, D. & Burns, J. A. in Jupiter (ed. Gehrels, T.) 991–1034 (University of Arizona Press, Tucson, 1976).

    Google Scholar 

  25. Lane, A. L., Nelson, R. M. & Matson, D. L. Nature 292, 38–39 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Johnson, T. V. et al. J. geophys. Res. 88, 5789–5805 (1983).

    Article  ADS  Google Scholar 

  27. Lucchitta, B. K. & Soderblom, L. A. in Satellites of Jupiter (ed. Morrison, D.) 521–555 (University of Arizona Press, Tucson, 1982).

    Google Scholar 

  28. Nelson, M. L. et al. Icarus 65, 129–151 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Shoemaker, E. M., Lucchitta, B. K., Plescia, J. B., Squyres, S. W. & Wilhelms, D. E. in Satellites of Jupiter (ed. Morrison, D.) 435–520 (University of Arizona Press, Tucson, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buratti, B., Nelson, R. & Lane, A. Surficial textures of the Galilean satellites. Nature 333, 148–151 (1988). https://doi.org/10.1038/333148a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333148a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing