Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-I

Abstract

Eukaryotic cells are dependent on their ability to translocate membraneous elements about the cytoplasm. In many cells long translocations of organelles are associated with microtubules1–3. In other cases, such as the rapid cytoplasmic streaming in some algae, organelles appear to be propelled along actin filaments4. It has been assumed, but not proven, that myosin produces these movements. We have tested vesicles from another eukaryotic cell for their ability to move on the exposed actin bundles of Nitella5 as an indiction that actin-based organelle movements may be a general property of cells. We found that organelles from Acanthamoeba castellanii can move along Nitella actin filaments. Here, we report two different experiments indicating that the single-headed non-polymerizable myosin isozyme myosin-I (ref. 6) is responsible for this organelle motility. First, monoclonal antibodies to myosin-I inhibit movement, but antibodies that inhibit double-headed myosin-II do not. Second, 20% of the myosin-I in homogenates co-migrates with motile vesicles during Percoll density-gradient ultracentrifugation. This is the first indication of a role for myosin-I within the cell and supports the suggestion of Albanesi et al.7 that myosin-I moves vesicles in this way.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schliwa, M. Cell Muscle Motil. 5, 1–82 (1984).

    Article  CAS  Google Scholar 

  2. Schnapp, B. J., Vale, R. D., Sheetz, M. P. & Reese, T. S. Cell 40, 455–462 (1985).

    Article  CAS  Google Scholar 

  3. Allen, R. D. et al. J. Cell Biol. 100, 1736–1752 (1985).

    Article  CAS  Google Scholar 

  4. Kachar, B. Science 227, 1355–1357 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Sheetz, M. P. & Spudich, J. A. Nature 303, 31–35 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Pollard, T. D. & Korn, E. D. J. biol. Chem. 248, 4682–4690 (1973).

    CAS  Google Scholar 

  7. Albanesi, J. P. et al. J. biol. Chem. 260, 8649–8652 (1985).

    CAS  PubMed  Google Scholar 

  8. Kamiya, N. & Kuroda, K. Bot. Mag. 69, 544–554 (1956).

    Article  Google Scholar 

  9. Chen, J. C. W. & Kamiya, N. Cell Struct. Funct. 1, 1–9 (1975).

    Article  CAS  Google Scholar 

  10. Maruta, H. & Korn, E. D. J. biol Chem. 252, 6501–6509 (1977).

    CAS  PubMed  Google Scholar 

  11. Pollard, T. D., Stafford, W. F. & Porter, M. E. J. biol. Chem. 253, 4798–4808 (1978).

    CAS  Google Scholar 

  12. Hagen, S. C., Kiehart, D. P., Kaiser, D. A. & Pollard, T. D. J. Cell Biol. (in the press).

  13. Kiehart, D. P. & Pollard, T. D. J. Cell Biol. 99, 1024–1033 (1984).

    Article  CAS  Google Scholar 

  14. Kiehart, D. P., Kaiser, D. & Pollard, T. P. J. Cell Biol. 99, 1002–1014 (1984).

    Article  CAS  Google Scholar 

  15. Gadasi, H. & Korn, E. D. Nature 286, 452–456 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Cote, G. P., Albanesi, J. P., Ueno, T., Hammer, J. A. & Korn, E. D. J. biol. Chem. 260, 4543–4546 (1985).

    CAS  PubMed  Google Scholar 

  17. Collins, J. H. & Borysenko, C. W. J. biol. Chem. 259, 14128–14135 (1984).

    CAS  PubMed  Google Scholar 

  18. Edds, K. T. J. Cell Biol. 66, 145–155 (1975).

    Article  CAS  Google Scholar 

  19. Bradley, T. J. & Satir, P. J. supramolec. Struct. 12, 165–175 (1979).

    Article  CAS  Google Scholar 

  20. Isenberg, G., Schubert, P. & Kreutzberg, G. W. Brain Res. 194, 588–593 (1980).

    Article  CAS  Google Scholar 

  21. Goldberg, D. J., Harris, D. A., Lubit, B. W. & Schwartz, J. H. Proc. natn. Acad. Sci. U.S.A 77, 7448–7452 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Brady, S. T., Lasek, R. J., Allen, R. D., Yin, H. L. & Stossel, T. P. Nature 310, 56–58 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Margel, S., Beitler, U. & Ofarim, M. J. Cell Sci. 56, 157–175 (1982).

    CAS  PubMed  Google Scholar 

  24. Laemmli, U. K. Nature 229, 680–685 (1970).

    Article  ADS  Google Scholar 

  25. Towbin, H., Staehlin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, R., Pollard, T. Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-I. Nature 322, 754–756 (1986). https://doi.org/10.1038/322754a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322754a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing