Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal erosion by komatiites at Kambalda, Western Australia and the genesis of nickel ores

Abstract

Huppert et al.1 calculated that komatiites flow turbulently, transfer heat efficiently to their substrate, and thus potentially produce thermal-erosion channels in sequences onto which they were erupted. Their suggestion that komatiite-hosted (Kambalda-type2) nickel ores reside in such channels has led to resurgence of interest in volcanic models for ore emplacement3–5 and caused controversy6,7. Such models have important implications, not only to ore-genetic studies but also to interpretation of the geochemistry of komatiites8 and their Sm–Nd systematics9,10. Here we demonstrate that interspinifex Fe–Ni–Cu sulphide ores, which underlie some hanging wall massive sulphide ores at Kambalda the site of one of the world's major nickel deposits, formed through thermal erosion of underlying komatiite flows and possibly also sediments, providing proof of thermal erosion. However, we caution against the general application of thermal-erosion models to the eruption of komatiites. It seems that significant thermal erosion occurred rarely, and only where basal concentrations of highly thermally conductive sulphide liquid were present at the base of localized lava channels. Isotope data11,12 and theoretical considerations13 suggest that the komatiites were contaminated by crustal rocks before eruption, although there is limited evidence that localized contamination, including sulphide assimilation4, may also have occurred below lava channels localized in pre-existing embayments or troughs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Huppert, H. E., Sparks, R. S. J., Turner, J. S. & Arndt, N. T. Nature 309, 19–22 (1984).

    Article  ADS  Google Scholar 

  2. Gresham, J. J. & Loftus-Hills, G. D. Econ. Geol. 76, 1373–1416 (1981).

    Article  CAS  Google Scholar 

  3. Lesher, C. M., Arndt, N. T. & Groves, D. I. Sulphide Deposits in Mafic and Ultramafic Rocks (eds Buchanan, D. L. & Jones, M. J.) 70–80 (Institution of Mining and Metallurgy, London, 1984).

    Google Scholar 

  4. Lesher, C. M. & Groves, D. I. Geology and Formation Conditions of Copper Deposits (eds Naldrett, A. J., Ridge, J. D., Vokes, F. M., Genkin, A. D. & Sillitoe, R. H.) (Springer, Berlin, in the press).

  5. Gresham, J. J. Geology and Formation Conditions of Copper Deposits (eds Naldrett, A. J., Ridge, J. D., Vokes, F. M., Genkin, A. D. & Sillitoe, R. H.) (Springer, Berlin, in the press).

  6. Claoue-Long, J. C. & Nesbitt, R. W. Nature 313, 247 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Huppert, H. E., Sparks, R. S. J. & Arndt, N. T. Nature 13, 247–248 (1985).

    Article  Google Scholar 

  8. Nisbet, E. G. Nature 309, 14–15 (1984).

    Article  ADS  Google Scholar 

  9. Claoue-Long, J. C., Thirlwall, M. F. & Nesbitt, R. W. Nature 307, 697–701 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Bickle, M. J. Nature 312, 702–703 (1984).

    Article  ADS  Google Scholar 

  11. Compston, W., Williams, I. S., Campbell, I. H. & Gresham, J. J. Earth planet. Sci. Lett. (in the press).

  12. Chauvel, C., Dupre, B. & Jenner, G. A. Earth planet. Sci. Lett. 74, 315–324 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Huppert, H. E. & Sparks, R. S. J. Earth planet. Sci. Lett. 74, 371–386 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Woolrich, P., Cowden, A. & Giorgetta, N. E. Econ. Geol. 76, 1629–1644 (1981).

    Article  CAS  Google Scholar 

  15. Groves, D. I., Barrett, F. N., Binns, R. A. & McQueen, K. G. Econ. Geol. 72, 1224–1244 (1977).

    Article  CAS  Google Scholar 

  16. Arndt, N. T. Yb. Carnegie Instn. Wash 75, 555–562 (1976).

    Google Scholar 

  17. Craig, J. R. & Kullerud, G. Econ. Geol. Monogr. 4, 344–358 (1969).

    Google Scholar 

  18. Ross, J. R. & Hopkins, G. M. F. Economic Geology of Australia and Papua New Guinea, I. Metals (ed. Knight, C. L.) 100–121 (Australian Institute of Mining and Metallurgy, Melbourne, 1975).

    Google Scholar 

  19. Bavinton, O. A. thesis, Australian National Univ. (1979).

  20. Williams, R. K., Veeraburns, M. & Philbrook, W. O. AIME Metall. Trans. 3, 255–260 (1972).

    ADS  CAS  Google Scholar 

  21. Jaeger, J. C. Basalts: The Poldervaart Treatise on Rocks of Basaltic Composition (eds Hess, H. H. & Poldervaart, A.) 503–536 (Wiley, New York, 1968).

    Google Scholar 

  22. Bickle, M. J. Komatiites (eds Arndt, N. T. & Nisbett, E. G.) 479–494 (Alien and Unwin, London, 1982).

    Google Scholar 

  23. Lesher, C. M. thesis, Univ. Western Australia (1983).

  24. Groves, D. I., Lesher, C. M. & Gee, R. D. Sulphide Deposits in Mafic and Ultramafic Rocks (eds Buchannan, D. L. & Jones, M. J.) 1–13 (Institution of Mining and Metallurgy, London, 1984).

    Google Scholar 

  25. Groves, D. I., Barrett, F. M. & McQueen, K. G. Can. Miner. 17, 319–336 (1979).

    CAS  Google Scholar 

  26. Ewers, W. E. & Hudson, D. R. Econ. Geol. 67, 1075–1092 (1972).

    Article  CAS  Google Scholar 

  27. Parker, P. thesis, Univ. Western Australia (1984).

  28. Lesher, C. M., Lee, R. F., Groves, D. I., Bickle, M. J. & Donaldson, M. J. Econ. Geol. 76, 1714–1728 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groves, D., Korkiakoski, E., McNaughton, N. et al. Thermal erosion by komatiites at Kambalda, Western Australia and the genesis of nickel ores. Nature 319, 136–139 (1986). https://doi.org/10.1038/319136a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319136a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing