Contents

Preface V
1 Triangulations in Mathematics 1
1.1 Combinatorics and triangulations 2
1.2 Optimization and triangulations 13
1.3 Algebra and triangulations 21
1.4 The rest of this book 34
Exercises 38
2 Configurations, Triangulations, Subdivisions, and Flips 43
2.1 The official languages in the land of triangulations 43
2.1.1 Polyhedra and cones 43
2.1.2 Point configurations 47
2.1.3 Geometry of point configurations 50
2.2 A closer look at the definition of triangulation 53
2.2.1 There is always a triangulation 54
2.2.2 A famous example: the Delaunay triangulation 56
2.2.3 Regular subdivisions and their structure 59
2.3 A bullet-proof definition of polyhedral subdivisions 62
2.3.1 Polyhedral subdivisions 62
2.3.2 Regular subdivisions, again 67
2.4 Flips and the graph of triangulations 72
2.4.1 Corank-one configurations and circuits 72
2.4.2 Almost-triangulations and flips 74
2.5 Vector configurations and their triangulations 76
2.5.1 Vector configurations 77
2.5.2 Polyhedral subdivisions of vector configurations 79
2.5.3 Regular subdivisions of vector configurations 81
2.6 Triangulations as simplicial complexes 83
2.6.1 Simplicial complexes 83
2.6.2 The f-vector of a simplicial complexes 84
2.6.3 Linear constraints on the f-vector 87
Exercises 90
3 Life in Two Dimensions 93
3.1 Some basic properties 93
3.2 A few examples of triangulations in the plane 95
3.2.1 Placing and pulling triangulations 96
3.2.2 Delaunay triangulations 97
3.2.3 Greedy and minimum weight triangulations 102
3.3 The set of all triangulations of a point set 107
3.3.1 The exact number of triangulations 107
3.3.2 The maximum possible number of triangulations 112
3.3.3 The minimum possible number of triangulations 115
3.3.4 The poset of subdivisions 116
3.4 Flips in triangulations 119
3.4.1 All triangulations of a point set in the plane are connected by flips 120
3.4.2 Effective enumeration of triangulations 123
3.4.3 Further properties of the graph of flips 128
3.5 Pseudo-triangulations 131
3.6 Life in three dimensions 133
3.6.1 The number of tetrahedra 134
3.6.2 Monotone flipping does not (always) work 137
3.6.3 The number of flips 141
3.7 Notes and References 145
Exercises 146
4 A Tool Box 149
4.1 Combinatorics of configurations 149
4.1.1 Dependences, circuits, and the intersection property 150
4.1.2 Evaluations, cocircuits, and the union property 155
4.1.3 Gale transforms and the duality between circuits and cocircuits 160
4.2 Manipulating vector configurations 165
4.2.1 Pyramids and joins 165
4.2.2 Prisms and products 167
4.2.3 Deletion 169
4.2.4 Contraction 171
4.2.5 One-point suspension 175
4.3 Generating polyhedral subdivisions 178
4.3.1 The placing (or pushing) triangulation 178
4.3.2 The pulling triangulation 181
4.3.3 Lexicographic triangulations 182
4.3.4 Pushing and pulling refinements 183
4.4 Two equivalent characterizations of flips 185
4.4.1 Flips via circuits 186
4.4.2 Flips via walls 188
4.5 More characterizations of triangulations and subdivisions 190
4.5.1 Geometric characterizations 191
4.5.2 Combinatorial characterizations 203
Exercises 207
5 Regular Triangulations and Secondary Polytopes 209
5.1 The secondary polytope 210
5.1.1 Motivating examples 210
5.1.2 Statement of the main theorem 214
5.1.3 Dimension and affine span of the secondary polytope 217
5.2 The normal fan of the secondary polytope 221
5.2.1 Secondary cones 221
5.2.2 The secondary fan 225
5.2.3 Proof of the main theorem 229
5.3 Structure of the secondary polytope 233
5.3.1 Edges of the secondary polytope 233
5.3.2 Monotone paths on the secondary polytope 236
5.3.3 Facets of the secondary polytope 241
5.4 Chambers 243
5.4.1 The chamber fan 243
5.4.2 Flips in the chamber fan 248
5.5 Configurations with fixed corank 257
5.5.1 Configurations with $d+3$ points 257
5.5.2 Configurations with $d+4$ points 261
5.5.3 Lawrence polytopes and the complexity of secondary polytopes 264
Exercises 270
6 Some Interesting Configurations 275
6.1 Cyclic polytopes 275
6.1.1 Warm-up example: two dimensions 276
6.1.2 Combinatorial properties of cyclic polytopes 277
6.1.3 Triangulations as sections of the canonical projection 283
6.1.4 Higher Stasheff-Tamari posets 285
6.1.5 The structure theorem for the first Stasheff-Tamari poset 287
6.1.6 Cyclic polytopes have many triangulations 290
6.2 Products of two simplices 294
6.2.1 The prism over a simplex 294
6.2.2 The product of simplices 299
6.2.3 Staircase triangulations 301
6.2.4 Non-regular triangulations of products of simplices 304
6.3 Cubes and their subpolytopes 311
6.3.1 Small $0 / 1$ non-regular triangulations 311
6.3.2 Two simple ways to triangulate any cube 314
6.3.3 Triangulating high-dimensional cubes. State of the art 316
6.3.4 Cubes of three dimensions 319
6.3.5 Cubes of four dimensions 322
6.3.6 Slices of cubes: triangulations of hypersimplices 325
6.3.7 Birkhoff's polytope 330
Exercises 334
7 Some Interesting Triangulations 337
7.1 The mother of all examples, and some relatives 338
7.1.1 A theme with many variations 338
7.1.2 Twelve proofs of non-regularity 342
7.2 Highly flip-deficient triangulations 345
7.2.1 Dimension 3: A zig-zag grid 345
7.2.2 Locally acyclic orientations and triangulations of products 349
7.2.3 Locally acyclic orientations without reversible edges 352
7.2.4 Dimension 4: Layers of prisms 356
7.3 Dimension 5: A disconnected graph of triangulations with unimodular triangulations 358
7.3.1 Locally acyclic orientations of boundary subcomplexes 358
7.3.2 Unimodular triangulations in different components of the graph of triangulations 360
7.3.3 Exponential number of components in the graph of flips 361
7.4 Dimension 6: A disconnected graph of triangulations in general position 362
7.4.1 The building block: Gale octagons 363
7.4.2 Seventeen points in special position 365
7.4.3 A disconnected space of triangulations in general position 369
Exercises 374
8 Algorithmic Issues 377
8.1 Tools for computation 377
8.1.1 Chirotopes 377
8.1.2 Computing the chirotope 378
8.1.3 Computing circuit and cocircuit signatures from the chirotope 383
8.2 Verification and realizability 385
8.2.1 Constructing regular triangulations in practice 386
8.2.2 Checking regularity of a triangulation 387
8.3 Listing and enumerating triangulations 388
8.3.1 Exploring a flip-graph component 389
8.3.2 Enumeration of all triangulations 390
8.3.3 Enumeration with symmetry 392
8.3.4 Implementation issues 393
8.4 Bounding the number of triangulations 396
8.5 Optimization 398
8.5.1 A linear optimization approach: the universal polytope 400
8.5.2 Relaxations of the universal polytope and its edges 406
8.5.3 Equidecomposable and weakly neighborly polytopes 410
8.6 Computational complexity of triangulation problems 413
8.6.1 A very quick review of complexity classes 413
8.6.2 The hardness of the planar constrained triangulation problem 415
8.6.3 Hardness of minimum length triangulations in the plane 422
8.6.4 Hardness of minimal size triangulations of convex polytopes 425
Exercises 429
9 Further Topics 433
9.1 Fiber polytopes 433
9.1.1 Monotone paths 433
9.1.2 Zonotopal tilings 436
9.1.3 Polyhedral subdivisions 438
9.1.4 Compatible subdivisions and the fiber polytope 438
9.2 Mixed subdivisions and the Cayley trick 445
9.2.1 An example 445
9.2.2 Mixed subdivisions and the Minkowski projection 447
9.2.3 Subdivisions in the Cayley embedding and the Cayley projection 452
9.2.4 The Cayley trick 454
9.2.5 Product of a triangle and k-simplex 459
9.3 Lattice polytopes and unimodular triangulations 463
9.3.1 Triangulations of lattice polygons 465
9.3.2 Existence of unimodular triangulations 469
9.3.3 Ehrhart polynomials and unimodular triangulations 475
9.4 Triangulations and Gröbner bases 478
9.4.1 Gröbner bases and toric ideals 479
9.4.2 Sturmfels' correspondence 481
9.5 Polytopal complexes and regular triangulations 488
9.5.1 Central and normal fans as regular triangulations 489
9.5.2 Shellings, flips, and face vectors 493
9.5.3 Polytopality via regular triangulations 502
Exercises 509
Bibliography 513
Index 531

