Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (4)
  • Electronic Resource  (4)
  • 2000-2004  (4)
  • 1985-1989
  • 1960-1964
  • 1820-1829
  • 2001  (4)
  • PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena – 05.30.Jp Boson systems – 32.80.Pj Optical cooling of atoms; trapping  (2)
  • snakes  (2)
Source
  • Articles: DFG German National Licenses  (4)
Material
  • Electronic Resource  (4)
Years
  • 2000-2004  (4)
  • 1985-1989
  • 1960-1964
  • 1820-1829
Year
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 20 (2001), S. 451-467 
    ISSN: 1434-6036
    Keywords: PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena – 05.30.Jp Boson systems – 32.80.Pj Optical cooling of atoms; trapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: We discuss the dynamics of two weakly coupled Bose-Einstein condensates in a double-well potential, contrasting the mean-field picture to the exact N-particle evolution. On the mean-field level, a self-trapping transition occurs when the scaled interaction strength exceeds a critical value; this transition essentially persists in small condensates comprising about 1000 atoms. When the double-well is modulated periodically in time, Floquet-type solutions to the nonlinear Schrödinger equation take over the role of the stationary mean-field states. These nonlinear Floquet states can be classified as “unbalanced” or “balanced”, depending on whether or not they entail long-time confinement of most particles to one well. Since the emergence of unbalanced Floquet states depends on the amplitude and frequency of the modulating force, we predict that the onset of self-trapping can efficiently be controlled by varying these parameters. This prediction is verified numerically by both mean-field and N-particle calculations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 17 (2001), S. 351-363 
    ISSN: 1434-6079
    Keywords: PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena – 05.30.Jp Boson systems – 32.80.Pj Optical cooling of atoms; trapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: An instanton method is proposed to investigate the quantum tunneling between two weakly-linked Bose-Einstein condensates confined in double-well potential traps. We point out some intrinsic pathologies in the earlier treatments of other authors and make an effort to go beyond these very simple zero order models. The tunneling amplitude may be calculated in the Thomas-Fermi approximation and beyond it; we find it depends on the number of the trapped atoms, through the chemical potential. Some suggestions are given for the observation of the Josephson oscillation and the MQST.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 44 (2001), S. 137-155 
    ISSN: 1573-1405
    Keywords: snakes ; pedal curves and surfaces ; curve and surface evolution ; level-set method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In this paper, we propose significant extensions to the “snake pedal” model, a powerful geometric shape modeling scheme introduced in (Vemuri and Guo, 1998). The extension allows the model to automatically cope with topological changes and for the first time, introduces the concept of a compact global shape into geometric active models. The ability to characterize global shape of an object using very few parameters facilitates shape learning and recognition. In this new modeling scheme, object shapes are represented using a parameterized function—called the generator—which accounts for the global shape of an object and the pedal curve (surface) of this global shape with respect to a geometric snake to represent any local detail. Traditionally, pedal curves (surfaces) are defined as the loci of the feet of perpendiculars to the tangents of the generator from a fixed point called the pedal point. Local shape control is achieved by introducing a set of pedal points—lying on a snake—for each point on the generator. The model dubbed as a “snake pedal” allows for interactive manipulation via forces applied to the snake. In this work, we replace the snake by a geometric snake and derive all the necessary mathematics for evolving the geometric snake when the snake pedal is assumed to evolve as a function of its curvature. Automatic topological changes of the model may be achieved by implementing the geometric snake in a level-set framework. We demonstrate the applicability of this modeling scheme via examples of shape recovery from a variety of 2D and 3D image data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 44 (2001), S. 87-109 
    ISSN: 1573-1405
    Keywords: colour ; statistics ; statistical modeling ; segmentation ; tracking ; active region models ; snakes ; image processing ; computer vision ; physics-based vision
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In this paper we investigate how best to model naturally arising distributions of colour camera data. It has become standard to model single mode distributions of colour data by ignoring the intensity component and constructing a Gaussian model of the chromaticity. This approach is appealing, because the intensity of data can change arbitrarily due to shadowing and shading, whereas the chromaticity is more robust to these effects. However, it is unclear how best to construct such a model, since there are many domains in which the chromaticity can be represented. Furthermore, the applicability of this kind of model is questionable in all but the most basic lighting environments. We begin with a review of the reflection processes that give rise to distributions of colour data. Several candidate models are then presented; some are from the existing literature and some are novel. Properties of the different models are compared analytically and the models are empirically compared within a region tracking application over two separate sets of data. Results show that chromaticity based models perform well in constrained environments where the physical model upon which they are based applies. It is further found that models based on spherical representations of the chromaticity data provide better performance than those based on more common planar representations, such as the chromaticity plane or the normalised colour space. In less constrained environments, however, such as daylight, chromaticity based models do not perform well, because of the effects of additional illumination components, which violate the physical model upon which they are based.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...