Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • 2005-2009  (2)
  • 1970-1974
  • 1940-1944
  • 1890-1899
  • 1860-1869
  • 2006  (2)
  • 1897
  • 1865
  • 1813
  • 1811
  • Pseudomonas oleovorans  (1)
  • activated sludge  (1)
Source
  • Articles: DFG German National Licenses  (2)
Material
Years
  • 2005-2009  (2)
  • 1970-1974
  • 1940-1944
  • 1890-1899
  • 1860-1869
Year
  • 2006  (2)
  • 1897
  • 1865
  • 1813
  • 1811
  • 1
    ISSN: 1572-9729
    Keywords: acetochlor ; degradation ; isolation ; Pseudomonas oleovorans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract To date, no pure bacterial cultures that could degrade acetochlor have been described. In this study, one strain of microorganism capable of degrading acetochlor, designated as LCa2, was isolated from acetochlor-contaminated soil. The strain LCa2 is Pseudomonas oleovorans according to the criteria of Bergey’s manual of determinative bacteriology and sequence analysis of the partial 16S rRNA gene. Optimum growth temperature and pH were 35 °C and 8.0, respectively. The strain could degrade 98.03% of acetochlor treated at a concentration of 7.6 mg l−1 after 7 days of incubation and could tolerate 200 mg l−1 of acetochlor. When the acetochlor concentration became higher, the degradation cycle became longer. The acetochlor biodegradation products were identified by GC–MS based on mass spectral data and fragmentation patterns. The main plausible degradative pathways involved dechlorination, hydroxylation, N-dealkylation, C-dealkylation and dehydrogenation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9729
    Keywords: activated sludge ; dichlorophenol ; monooxygenation ; nicotinamide adenine dinucleotide ; phenolics ; specific growth rate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The two-tank accelerator/aerator modification of activated sludge significantly increases the biodegradation of hydrocarbons requiring initial monooxygenation reactions, such as phenol and 2,4-dichlorophenol (DCP). The small accelerator tank has a controlled low dissolved oxygen (DO) concentration that can enrich the biomass in NADH + H+. It also has a very high specific growth rate (μacc) that up-regulates the biomass’s content of the monooxygenase enzyme. Here, we develop and test the ACCEL model, which quantifies all key phenomena taking place when the accelerator/aerator system is used to enhance biodegradation of hydrocarbons requiring initial monooxygenations. Monooxygenation kinetics follow a multiplicative relationship in which the organic substrates (phenol or DCP) and DO have separate Monod terms, while the biomass’s content of NADH + H+ has a first-order term. The monooxygenase enzyme has different affinities (K values) for phenol and DCP. The biomass’s NADH + H+ content is based on a proportioning of NAD(H) according to the relative rates of NADH + H+ sources and sinks. Biomass synthesis occurs simultaneously through utilization of acetate, phenol, and DCP, but each has its own true yield. The ACCEL model accurately simulates all trends for one-tank and two-tank experiments in which acetate, phenol, and DCP are biodegraded together. In particular, DCP removal is affected most by DOacc and the retention-time ratio, Θacc/Θtotal. Adding an accelerator tank dramatically increases DCP removal, and the best DCP removal occurs for 0.2 〈 DOacc  〈 0.5 mg/l and 0.08 〈 Θacc/Θtotal 〈 0.2. The rates of phenol and DCP utilization follow the multiplicative relationship with a maximum specific rate coefficient proportional to μacc. Finally, μacc increases rapidly for Θacc/Θtotal 〈 0.25, acetate removal in the accelerator fuels the high μacc, and the biomass’s NADH + H+ content increases very dramatically for DOacc 〈 0.25 mg/l.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...