Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • 2000-2004
  • 1985-1989  (3)
  • 1930-1934
  • 1920-1924
  • 1910-1914
  • 1840-1849
  • 1989  (3)
  • Apoptosis
Source
  • Articles: DFG German National Licenses  (3)
Material
Years
  • 2000-2004
  • 1985-1989  (3)
  • 1930-1934
  • 1920-1924
  • 1910-1914
  • +
Year
  • 1
    ISSN: 1432-0878
    Keywords: Epidermis ; Cell deletion ; Apoptosis ; Kinetic homeostasis ; Merkel cells ; Bufo bufo (Anura)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary In normal, non-expanding toad epidermis more cells are produced than needed to replace cells lost by moulting. By implication, cell deletion additional to moulting must take place. This paper deals with the mechanisms by which the “surplus” of cells is deleted, taking advantage of the fact that the ratio between cell birth rate (K b) and the rate of desquamation (K d), which in normal toads is 2 to 3, can be manipulated. In toads deprived of the pars distalis of the pituitary gland it is decreased to 0.2 to 0.3, and in toads with hydrocortisone pellets implanted into the subcutaneous lymph space it is increased to 7 to 10. Thus, structures candidates for the morphological manifestation of the deletion process should occur rarely in toads in which the pars distalis has been removed and frequently in toads with hydrocortisone pellets implanted. Categorization and enumeration of such structures by light microscopy in the epidermis from operated, normal, and hormone-treated toads were performed. The incidence of structures referred to as “dark cells” and “omega-figures” were found to correlate relatively well with the K b/Kd-ratio. A subsequent ultrastructural analysis — on a cell-by-cell basis — of “dark cells” showed these to reflect various stages of apoptosis. The duration of the apoptotic process was calculated to be approximately 7 h. Light- and electron microscopy of “omega-figures” combined with histochemical observations of PSA-lectin binding were interpreted as reflecting a release of cells from the basal epidermis and their final elimination within the dermis. It is concluded (i) that apoptosis is an important mechanism of controlled cell deletion, (ii) that emigration to, and elimination in, the dermis is a possible deletion mechanism, and (iii) that necrosis is unlikely to play a role in controlled cell deletion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Apoptosis ; Necrosis ; Gills ; Chloride cells ; Oreochromis mossambicus (Teleostei)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Degeneration and death of branchial epithelial cells were studied in an African cichlid fish. In both freshwater and seawater fish the superficially located pavement cells are sloughed off at the end of their lifecycle. This process is preceded by degeneration via a process of cytoplasmic shrinkage and condensation related to apoptotic (physiologically controlled) cell death. The chloride cells are pleomorphic, i.e., accessory, mature, and degenerating cells. Degeneration of chloride cells mainly occurs by apoptosis. Degenerating cells show shrinkage and densification of cytoplasm and nuclei, and swelling of the tubular system; these cells are then separated from the ambient water by pavement cells. They are finally phagocytosed and digested by macrophages. Apoptosis of chloride cells, but not of pavement cells, is greatly stimulated when the fish are in seawater; this reflects an increase in cellular turnover of the chloride cells. Accidental cell death (necrosis) of pavement cells or chloride cells is rarely observed in fully adapted freshwater and seawater fish. Its incidence increases in the first few days following transfer of fish from fresh water to seawater.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ [u.a.] : Wiley-Blackwell
    Journal of Orthopaedic Research 7 (1989), S. 654-666 
    ISSN: 0736-0266
    Keywords: Chondrocyte ; Hypertrophic ; Chondro-osseous ; Vascularization ; Apoptosis ; Cartilage ; Life and Medical Sciences
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: In the distal hypertrophic cell zone of growth plate cartilage, the penetration of metaphyseal vascular endothelial cells is into the noncalcified territorial and pericellular matrices. Cellular mechanisms that promote metaphyseal vascularization are understood poorly, partly because no study has addressed the question of the time sequence of cellular interactions at the chondro-osseous junction. The purpose of the present study is to make predictions about the relative and the real time duration of cellular events during vascular invasion, including an analysis of the time sequence of death of the terminal hypertrophic chondrocyte. The data from serial section analysis at the light microscopical level of tetracycline-labeled growth plates indicate that death of the terminal hypertrophic chondrocyte occurs in discrete morphological stages characterized by rapid cellular condensation followed, within minutes, by endothelial cell penetration into the vacated lacuna. Cellular condensation lasts ∼45 min or 18% of the time a cell spends as a terminal chondrocyte. The data also demonstrate that chondrocytic death occurs prior to invasion by vascular endothelial cells and that the chondrocytic lacuna remains empty for as long as 15 min before an endothelial cell or blood vascular cell fills the space.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...