Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • 1990-1994  (3)
  • 1950-1954
  • 1940-1944
  • 1920-1924
  • 1915-1919
  • 1840-1849
  • 1994  (3)
  • Ras
  • 1
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Cell cycle ; Bud site selection ; Guanine exchange factor ; Ras
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Guanine Exchange Factor (GEF) activity for Ras proteins has been associated with a conserved domain in Cdc25p, Sdc25p in Saccharomyces cerevisiae and several other proteins recently found in other eukaryotes. We have assessed the structure-function relationships between three different members of this family in S. cerevisiae, Cdc25p, Sdc25p and Bud5p. Cdc25p controls the Ras pathway, whereas Bud5p controls bud site localization. We demonstrate that the GEF domain of Sdc25p is closely related to that of Cdc25p. We first constructed a thermosensitive allele of SDC25 by specifically altering amino acid positions known to be changed in the cdc25-1 mutation. Secondly, we constructed three chimeric genes from CDC25 and SDC25, the products of which are as active in the Ras pathway as are the wild-type proteins. In contrast, similar chimeras made between CDC25 and BUD5 lead to proteins that are inactive both in the Ras and budding control pathways. This difference in the ability of chimeric proteins to retain activity allows us to define two subclasses of structurally different GEFs: Cdc25p and Sdc25p are Ras-specific GEFs, and Bud5p is a putative GEF for the Rsr1/Bud1 Rap-like protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0749-503X
    Keywords: Yeast ; adenylate cyclase ; Ras ; Kluyveromyces marxianus ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The presence of adenylate cyclase activity was first demonstrated in membrane fractions from the budding yeast Kluyveromyces marxianus. The enzyme showed a Mn2+- and Mg2+-dependent activity, with optimal pH at around 6 as observed in other yeast species. As in Saccharomyces cerevisiae, where adenylate cyclase is regulated by RAS1 and RAS2, we detected a guanyl nucleotide-dependent activity. Interestingly Y13-259 monoclonal antibody, raised against mammalian p21Ha-ras, inhibited Mg2+ plus GTP-γ-S-dependent cAMP production, suggesting that the GTP binding proteins involved in adenylate cyclase regulation could be Ras proteins. The same antibody recognized on Western blot and immunoprecipitated a 40 kDa polypeptide from K. marxianus crude membranes. This polypeptide was not detected by an anti-RAS2 polyclonal antibody raised against S. cerevisiae RAS2 protein, suggesting that Ras proteins from the two species could be structurally different.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 10 (1994), S. 1753-1790 
    ISSN: 0749-503X
    Keywords: Metabolic messenger ; glucose repression ; cAMP ; Ras ; adenylate cyclase ; nitrogen signalling ; Fermentable-growth-medium induced pathway ; growth control ; pheromone signaling ; mating pathway ; cell cycle progression ; start point ; heat shock response ; high-osmolarity response ; hypotonic stress ; phosphatidylinositol pathway ; protein kinase C ; MAP kinase ; Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...