Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (4)
  • 1995-1999  (4)
  • 1950-1954
  • 1940-1944
  • 1905-1909
  • 1890-1899
  • 1995  (4)
  • Ras
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biomolecular NMR 5 (1995), S. 362-366 
    ISSN: 1573-5001
    Keywords: Dipolar relaxation ; 17O ; Hydrogen bond ; Amide ; p21 ; Ras
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The relaxation rates of the multiple-quantum coherence for the amide hydrogen of Gly13 in ras p21·GDP were determined in the presence and absence of 17O labeling in the β-phosphate of GDP. No significant difference could be observed between labeled and unlabeled samples, in spite of the fact that the hydrogen bond from the amide group of Gly13 to the β-phosphate is shorter than is typical, based on its chemical shift. For macromolecules in which an oxygen atom is the acceptor of a hydrogen bond, dipolar coupling between 17O and hydrogen is unlikely to be observable, except for extremely short H-bonds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 42 (1995), S. 515-522 
    ISSN: 1040-452X
    Keywords: Receptor tyrosine kinase ; Ras ; Raf ; MEK ; Drosophila ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Cell fate choice at the anterior and posterior embryonic termini of the Drosophila embryo requires the activation of a signal transduction pathway regulated by the receptor tyrosine kinase Torso. When Torso, which is uniformly distributed in the egg cell membrane, becomes activated locally at the termini, it triggers a phosphorylation cascade that culminates with localized expression of the transcription factors, tailless and huckebein. Expression of tailless and huckebein in turn determines terminal cell fates. Several genes have been characterized which encode proteins that are involved in Torso signaling: the adaptor protein Drk, the GTP-binding protein Ras1, the guanine nucleotide exchange factor Son of sevenless, and the kinases D-Raf and D-Mek. Genetic and molecular evidence supports a model in which these proteins lie in the same biochemical pathway. When activated by its ligand the membrane-bound receptor tyrosine kinase Torso initiates a signal transduction pathway mediated by Drk, Sos, and Ras1, which in turn activates a phosphorylation cascade mediated by the kinases D-Raf and D-Mek, which ultimately control the localized expression of the transcription factors tailless and huckebein. Recently, we found that D-Raf can be partially activated by Torso in the absence of Ras1, a finding supported by the phenotype of embryos lacking either Drk or Sos activity, as well as by the phenotype of a D-raf mutation that abolishes binding of Ras1 to D-Raf. These findings indicate that full D-Raf activation requires input not only from Ras1 but also from an as yet uncharacterized Ras1-independent pathway. In addition to these molecules we have characterized the putative protein tyrosine phosphatase Corkscrew as a positive transducer downstream of Torso. © 1995 wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Developmental Dynamics 202 (1995), S. 302-311 
    ISSN: 1058-8388
    Keywords: Heart ; Isoforms ; Ras ; GAP ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The neurofibromatosis type 1 (NF1) gene encodes a tumor suppressor protein, termed neurofibromin, which is expressed predominantly in neurons, Schwann cells, oligodendrocytes, and leukocytes. There are at least three isoforms of neurofibromin produced by the alternative use of exons 23a and 48a. Previously we described the identification of an NF1 mRNA isoform containing an additional 54 nucleotides from exon 48a (type 3 NF1 ) in human skeletal, cardiac and smooth muscle tissues by reverse-transcribed (RT)-PCR. To extend our initial observations, we have produced high titer chicken IgY antibodies which specifically recognize this muscle-specific neurofibromin isoform. An NF1 cDNA was generated containing human exon 48a sequences and expressed as a fusion protein in bacteria. The muscle-specific neurofibromin antibodies detected this exon 48a fusion protein by Western immunoblotting. Immunoprecipitation using these type 3 neurofibromin antibodies also specifically detected a 250 kDa protein in human and rat muscle tissues. Type 3 neurofibromin was found in rat heart and muscle, but not in live, brain, kidney or spleen with levels of expression declining after postnatal day 7. Expression of total NF1 RNA during rat embryonic development was detected at high levels in E15 heart, tongue, and limb bud. In addition, using type 2 neurofibromin-specific antibodies, the existence of a fourth isoform of neurofibromin (type 4 neurofibromin) containing both exon 23a and 48a sequences was demonstrated in rat heart muscle tissues. The identification of two muscle-specific isoforms of neurofibromin expands our definition of this important tumor suppressor protein and suggests additional roles for neurofibromin in muscle development and differentiation. © 1995 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 42 (1995), S. 500-506 
    ISSN: 1040-452X
    Keywords: Ras ; Raf ; Signal transduction ; Kinases ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Ras proteins are members of a superfamily of small GTPases that are involved in many aspects of cell growth control. The ras p21 protooncogene products, H-ras, K-ras, and N-ras, transmit signals from growth factor receptors to a cascade of protein kinases that begins with the Raf protooncogene product, and leads to alterations in transcription factors and cell cycle proteins in the nucleus. This cascade is controlled at several points: Ras p21 proteins are regulated by GAPs and by exchange factors, whose activities are altered by growth factor receptor activation (Boguski and McCormick, 1993: Nature 366:643-654). Transmission of signals from Ras to Raf is regulated by the Ras-related protein Rap1 (a protein capable of reverting cell transformation) and by cAMP. Other aspects of Ras p21 regulation will be discussed, including the existence of RasGDl proteins that inhibit GDP dissociation from Ras, and may thus regulate the level of active Ras in the cell.The role of Ras in activation of Raf kinase appears to be limited to the recruitment of Raf to the plasma membrane, at which time Raf becomes stably modified to render it active (Leevers et al., 1994: Nature 369:411-414; Stokoe et al., 1994: Science 264:1463-1467). The nature of these modifications is unclear. Raf in the plasma membrane becomes associated with insoluble structural cell components that may be part of the activation. Furthermore, Raf is associated with proteins of the 14-3-3 family that appear necessary for kinase activation. The 14-3-3 proteins interact with all three conserved regions of Raf, including the kinase domain.In addition to Raf, Ras proteins interact with two known classes of proteins in a manner consistent with effector functions: these are the GAPs and regulators of the Ras-related protein Ral referred to as RalGDS. These biochemical data suggest that other functional pathways are regulated by Ras, including, perhaps, pathways involved in regulating cell shape and motility.The protein R-Ras p21 is about 50% identical to the Ras p21 protooncogene product. This protein is incapable of transforming cells, even though it interacts with Raf and other putative Ras effectors (Fernandez-Sarabia and Bischoff, 1993: Nature 366:274-275). On the other hand, it has recently been shown that R-Ras binds to the protooncogene product Bcl-2, a protein that transforms B cells by blocking apoptosis. R-Ras is regulated by the same GAP molecules as H-Ras and the other Ras protooncogene products, and may therefore be activated in a manner co-ordinate with these growth-promoting proteins. The possible connection between R-Ras and apoptosis will be discussed. © 1995 wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...