Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Opus Repository ZIB  (6,375)
Source
Years
Language
  • 1
    Publication Date: 2024-02-21
    Description: Finding collective variables to describe some important coarse-grained information on physical systems, in particular metastable states, remains a key issue in molecular dynamics. Recently, machine learning techniques have been intensively used to complement and possibly bypass expert knowledge in order to construct collective variables. Our focus here is on neural network approaches based on autoencoders. We study some relevant mathematical properties of the loss function considered for training autoencoders, and provide physical interpretations based on conditional variances and minimum energy paths. We also consider various extensions in order to better describe physical systems, by incorporating more information on transition states at saddle points, and/or allowing for multiple decoders in order to describe several transition paths. Our results are illustrated on toy two dimensional systems and on alanine dipeptide.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-11
    Description: Mixed-Integer Linear Programming (MILP) is a ubiquitous and practical modelling paradigm that is essential for optimising a broad range of real-world systems. The backbone of all modern MILP solvers is the branch-and-cut algorithm, which is a hybrid of the branch-and-bound and cutting planes algorithms. Cutting planes (cuts) are linear inequalities that tighten the relaxation of a MILP. While a lot of research has gone into deriving valid cuts for MILPs, less emphasis has been put on determining which cuts to select. Cuts in general are generated in rounds, and a subset of the generated cuts must be added to the relaxation. The decision on which subset of cuts to add is called cut selection. This is a crucial task since adding too many cuts makes the relaxation large and slow to optimise over. Conversely, adding too few cuts results in an insufficiently tightened relaxation, and more relaxations need to be enumerated. To further emphasise the difficulty, the effectiveness of an applied cut is both dependent on the other applied cuts, and the state of the MILP solver. In this thesis, we present theoretical results on the importance and difficulty of cut selection, as well as practical results that use cut selection to improve general MILP solver performance. Improving general MILP solver performance is of great importance for practitioners and has many runoff effects. Reducing the solve time of currently solved systems can directly improve efficiency within the application area. In addition, improved performance enables larger systems to be modelled and optimised, and MILP to be used in areas where it was previously impractical due to time restrictions. Each chapter of this thesis corresponds to a publication on cut selection, where the contributions of this thesis can naturally be divided into four components. The first two components are motivated by instance-dependent performance. In practice, for each subroutine, including cut selection, MILP solvers have adjustable parameters with hard-coded default values. It is ultimately unrealistic to expect these default values to perform well for every instance. Rather, it would be ideal if the parameters were dependent on the given instance. To show this motivation is well founded, we first introduce a family of parametric MILP instances and cuts to showcase worst-case performance of cut selection for any fixed parameter value. We then introduce a graph neural network architecture and reinforcement learning framework for learning instance-dependent cut scoring parameters. In the following component, we formalise language for determining if a cut has theoretical usefulness from a polyhedral point of view in relation to other cuts. In addition, to overcome issues of infeasible projections and dual degeneracy, we introduce analytic center based distance measures. We then construct a lightweight multi-output regression model that predicts relative solver performance of an instance for a set of distance measures. The final two components are motivated by general MILP solver improvement via cut selection. Such improvement was shown to be possible, albeit difficult to achieve, by the first half of this thesis. We relate branch-and-bound and cuts through their underlying disjunctions. Using a history of previously computed Gomory mixed-integer cuts, we reduce the solve time of SCIP over the 67% of affected MIPLIB 2017 instances by 4%. In the final component, we introduce new cut scoring measures and filtering methods based on information from other MILP solving processes. The new cut selection techniques reduce the solve time of SCIP over the 97% of affected MIPLIB 2017 instances by 5%.
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-23
    Description: Cardiac electrograms are an important tool to study the spread of excitation waves inside the heart, which in turn underlie muscle contraction. Electrograms can be used to analyse the dynamics of these waves, e.g. in fibrotic tissue. In computational models, these analyses can be done with greater detail than during minimally invasive in vivo procedures. Whilst homogenised models have been used to study electrogram genesis, such analyses have not yet been done in cellularly resolved models. Such high resolution may be required to develop a thorough understanding of the mechanisms behind abnormal excitation patterns leading to arrhythmias. In this study, we derived electrograms from an excitation propagation simulation in the Extracellular, Membrane, Intracellular (EMI) model, which represents these three domains explicitly in the mesh. We studied the effects of the microstructural excitation dynamics on electrogram genesis and morphology. We found that electrograms are sensitive to the myocyte alignment and connectivity, which translates into micro-fractionations in the electrograms.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-29
    Description: The Robust Perron Cluster Analysis (PCCA+) has become a popular spectral clustering algorithm for coarse-graining transition matrices of nearly decomposable Markov chains with transition states. Originally developed for reversible Markov chains, the algorithm only worked for transition matrices with real eigenvalues. In this paper, we therefore extend the theoretical framework of PCCA+ to Markov chains with a complex eigen-decomposition. We show that by replacing a complex conjugate pair of eigenvectors by their real and imaginary components, a real representation of the same subspace is obtained, which is suitable for the cluster analysis. We show that our approach leads to the same results as the generalized PCCA+ (GPCCA), which replaces the complex eigen-decomposition by a conceptually more difficult real Schur decomposition. We apply the method on non-reversible Markov chains, including circular chains, and demonstrate its efficiency compared to GPCCA. The experiments are performed in the Matlab programming language and codes are provided.
    Language: German
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-31
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-16
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-28
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-27
    Language: German
    Type: incollection , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-27
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-04
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-03-05
    Description: In our combined experimental, theoretical and numerical work, we study the out of equilibrium deformations in a shrinking ring of optically trapped, interacting colloidal particles. Steerable optical tweezers are used to confine dielectric microparticles along a circle of discrete harmonic potential wells, and to reduce the ring radius at a controlled quench speed. We show that excluded-volume interactions are enough to induce particle sliding from their equilibrium positions and nonequilibrium zigzag roughening of the colloidal structure. Our work unveils the underlying mechanism of interfacial deformation in radially driven microscopic discrete rings.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-03-14
    Description: In this article, we propose an interval constraint programming method for globally solving catalog-based categorical optimization problems. It supports catalogs of arbitrary size and properties of arbitrary dimension, and does not require any modeling effort from the user. A novel catalog-based contractor (or filtering operator) guarantees consistency between the categorical properties and the existing catalog items. This results in an intuitive and generic approach that is exact, rigorous (robust to roundoff errors) and can be easily implemented in an off-the-shelf interval-based continuous solver that interleaves branching and constraint propagation. We demonstrate the validity of the approach on a numerical problem in which a categorical variable is described by a two-dimensional property space. A Julia prototype is available as open-source software under the MIT license.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-03-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-03-18
    Description: Agent-based models (ABMs) provide an intuitive and powerful framework for studying social dynamics by modeling the interactions of individuals from the perspective of each individual. In addition to simulating and forecasting the dynamics of ABMs, the demand to solve optimization problems to support, for example, decision-making processes naturally arises. Most ABMs, however, are non-deterministic, high-dimensional dynamical systems, so objectives defined in terms of their behavior are computationally expensive. In particular, if the number of agents is large, evaluating the objective functions often becomes prohibitively time-consuming. We consider data-driven reduced models based on the Koopman generator to enable the efficient solution of multi-objective optimization problems involving ABMs. In a first step, we show how to obtain data-driven reduced models of non-deterministic dynamical systems (such as ABMs) that depend on potentially nonlinear control inputs. We then use them in the second step as surrogate models to solve multi-objective optimal control problems. We first illustrate our approach using the example of a voter model, where we compute optimal controls to steer the agents to a predetermined majority, and then using the example of an epidemic ABM, where we compute optimal containment strategies in a prototypical situation. We demonstrate that the surrogate models effectively approximate the Pareto-optimal points of the ABM dynamics by comparing the surrogate-based results with test points, where the objectives are evaluated using the ABM. Our results show that when objectives are defined by the dynamic behavior of ABMs, data-driven surrogate models support or even enable the solution of multi-objective optimization problems.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-03-19
    Description: Epidemiological models can not only be used to forecast the course of a pandemic like COVID-19, but also to propose and design non-pharmaceutical interventions such as school and work closing. In general, the design of optimal policies leads to nonlinear optimization problems that can be solved by numerical algorithms. Epidemiological models come in different complexities, ranging from systems of simple ordinary differential equations (ODEs) to complex agent-based models (ABMs). The former allow a fast and straightforward optimization, but are limited in accuracy, detail, and parameterization, while the latter can resolve spreading processes in detail, but are extremely expensive to optimize. We consider policy optimization in a prototypical situation modeled as both ODE and ABM, review numerical optimization approaches, and propose a heterogeneous multilevel approach based on combining a fine-resolution ABM and a coarse ODE model. Numerical experiments, in particular with respect to convergence speed, are given for illustrative examples.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-03-19
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-03-19
    Description: We study the solution of the rolling stock rotation problem with predictive maintenance (RSRP-PdM) by an iterative refinement approach that is based on a state-expanded event-graph. In this graph, the states are parameters of a failure distribution, and paths correspond to vehicle rotations with associated health state approximations. An optimal set of paths including maintenance can be computed by solving an integer linear program. Afterwards, the graph is refined and the procedure repeated. An associated linear program gives rise to a lower bound that can be used to determine the solution quality. Computational results for six instances derived from real-world timetables of a German railway company are presented. The results show the effectiveness of the approach and the quality of the solutions.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-03-19
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-03-19
    Description: Statistical shape models are an essential tool for various tasks in medical image analysis, including shape generation, reconstruction and classification. Shape models are learned from a population of example shapes, which are typically obtained through segmentation of volumetric medical images. In clinical practice, highly anisotropic volumetric scans with large slice distances are prevalent, e.g., to reduce radiation exposure in CT or image acquisition time in MR imaging. For existing shape modeling approaches, the resolution of the emerging model is limited to the resolution of the training shapes. Therefore, any missing information between slices prohibits existing methods from learning a high-resolution shape prior. We propose a novel shape modeling approach that can be trained on sparse, binary segmentation masks with large slice distances. This is achieved through employing continuous shape representations based on neural implicit functions. After training, our model can reconstruct shapes from various sparse inputs at high target resolutions beyond the resolution of individual training examples. We successfully reconstruct high-resolution shapes from as few as three orthogonal slices. Furthermore, our shape model allows us to embed various sparse segmentation masks into a common, low-dimensional latent space — independent of the acquisition direction, resolution, spacing, and field of view. We show that the emerging latent representation discriminates between healthy and pathological shapes, even when provided with sparse segmentation masks. Lastly, we qualitatively demonstrate that the emerging latent space is smooth and captures characteristic modes of shape variation. We evaluate our shape model on two anatomical structures: the lumbar vertebra and the distal femur, both from publicly available datasets.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
  • 21
    Publication Date: 2024-03-22
    Description: We propose two graph neural network layers for graphs with features in a Riemannian manifold. First, based on a manifold-valued graph diffusion equation, we construct a diffusion layer that can be applied to an arbitrary number of nodes and graph connectivity patterns. Second, we model a tangent multilayer perceptron by transferring ideas from the vector neuron framework to our general setting. Both layers are equivariant with respect to node permutations and isometries of the feature manifold. These properties have been shown to lead to a beneficial inductive bias in many deep learning tasks. Numerical examples on synthetic data as well as on triangle meshes of the right hippocampus to classify Alzheimer's disease demonstrate the very good performance of our layers.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-03-21
    Description: Knee osteoarthritis (KOA) is a degenerative disease that leads to pain and loss of function. It is estimated to affect over 500 million humans world-wide and is one of the most common reasons for disability. KOA is usually diagnosed by radiologists or clinical experts by anamnesis, physical examination, and by assessing medical image data. The latter is typically acquired using X-Ray or magnetic resonance imaging. Since manual image reading is subjective, tedious and time-consuming, automated methods are required for a fast and objective decision support and for a better understanding of the pathogenesis of KOA. This thesis sets a foundation towards automated computation of image-based KOA biomarkers for holistic assessment of the knee. This involves the assessment of multiple knee bones and soft tissues. An assessment of particular structures requires localization of these tissues. In order to automate a faithful localization of anatomical structures, deep learning-based methods are investigated and utilized. Additionally, convolutional neural networks (CNNs) are used for classification of medical image data, i.e., for a direct determination of the disease status and to detect anatomical structures and landmarks. The automatically computed anatomical volumes, locations, and other measurements are finally compared to values acquired by clinical experts and evaluated for clustering of KOA groups, classification of KOA severity, prediction of KOA progression, and prediction of total knee replacement. In various experiments it is shown that CNN-based methods are suitable for accurate medical image segmentation, object detection, landmark detection, and direct classification of disease stages from the image data. Computed features related to the menisci are found to be most expressive in terms of clustering of KOA groups and predicting of future disease states, thus allowing diagnosis of current KOA conditions and prediction of future conditions. The conclusion of this thesis is that machine learning-based, fully automated processing of medical image data shows potential for diagnosis and prediction of KOA grades. Future studies could investigate additional features in order to achieve an assessment of the whole knee or validate the findings of this work in clinical studies.
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-03-21
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-03-21
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-03-21
    Description: The dominant eigenfunctions of the Koopman operator characterize the metastabilities and slow-timescale dynamics of stochastic diffusion processes. In the context of molecular dynamics and Markov state modeling, they allow for a description of the location and frequencies of rare transitions, which are hard to obtain by direct simulation alone. In this article, we reformulate the eigenproblem in terms of the ISOKANN framework, an iterative algorithm that learns the eigenfunctions by alternating between short burst simulations and a mixture of machine learning and classical numerics, which naturally leads to a proof of convergence. We furthermore show how the intermediate iterates can be used to reduce the sampling variance by importance sampling and optimal control (enhanced sampling), as well as to select locations for further training (adaptive sampling). We demonstrate the usage of our proposed method in experiments, increasing the approximation accuracy by several orders of magnitude.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-03-26
    Description: We present EPR-Net, a novel and effective deep learning approach that tackles a crucial challenge in biophysics: constructing potential landscapes for high-dimensional non-equilibrium steady-state (NESS) systems. EPR-Net leverages a nice mathematical fact that the desired negative potential gradient is simply the orthogonal projection of the driving force of the underlying dynamics in a weighted inner-product space. Remarkably, our loss function has an intimate connection with the steady entropy production rate (EPR), enabling simultaneous landscape construction and EPR estimation. We introduce an enhanced learning strategy for systems with small noise, and extend our framework to include dimensionality reduction and state-dependent diffusion coefficient case in a unified fashion. Comparative evaluations on benchmark problems demonstrate the superior accuracy, effectiveness, and robustness of EPR-Net compared to existing methods. We apply our approach to challenging biophysical problems, such as an 8D limit cycle and a 52D multi-stability problem, which provide accurate solutions and interesting insights on constructed landscapes. With its versatility and power, EPR-Net offers a promising solution for diverse landscape construction problems in biophysics.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-03-26
    Description: Grazing-incidence X-ray diffraction (GIXRD) is a scattering technique which allows one to characterize the structure of fluid interfaces down to the molecular scale, including the measurement of the surface tension and of the interface roughness. However, the corresponding standard data analysis at non-zero wave numbers has been criticized as to be inconclusive because the scattering intensity is polluted by the unavoidable scattering from the bulk. Here we overcome this ambiguity by proposing a physically consistent model of the bulk contribution which is based on a minimal set of assumptions of experimental relevance. To this end, we derive an explicit integral expression for the background scattering, which can be determined numerically from the static structure factors of the coexisting bulk phases as independent input. Concerning the interpretation of GIXRD data inferred from computer simulations, we account also for the finite sizes of the bulk phases, which are unavoidable in simulations. The corresponding leading-order correction beyond the dominant contribution to the scattered intensity is revealed by asymptotic analysis, which is characterized by the competition between the linear system size and the X-ray penetration depth in the case of simulations. Specifically, we have calculated the expected GIXRD intensity for scattering at the planar liquid--vapor interface of Lennard-Jones fluids with truncated pair interactions via extensive, high-precision simulations. The reported data cover interfacial and bulk properties of fluid states along the whole liquid--vapor coexistence line. A sensitivity analysis demonstrates the robustness of our findings concerning the detailed definition of the mean interface position. We conclude that previous claims of an enhanced surface tension at mesoscopic scales are amenable to unambiguous tests via scattering experiments.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-03-26
    Description: Estimating the rate of rare conformational changes in molecular systems is one of the goals of molecular dynamics simulations. In the past few decades, a lot of progress has been done in data-based approaches toward this problem. In contrast, model-based methods, such as the Square Root Approximation (SqRA), directly derive these quantities from the potential energy functions. In this article, we demonstrate how the SqRA formalism naturally blends with the tensor structure obtained by coupling multiple systems, resulting in the tensor-based Square Root Approximation (tSqRA). It enables efficient treatment of high-dimensional systems using the SqRA and provides an algebraic expression of the impact of coupling energies between molecular subsystems. Based on the tSqRA, we also develop the projected rate estimation, a hybrid data-model-based algorithm that efficiently estimates the slowest rates for coupled systems. In addition, we investigate the possibility of integrating low-rank approximations within this framework to maximize the potential of the tSqRA.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-03-28
    Description: The microphysical structure of the lunar regolith provides information on the geologic history of the Moon. We used remote sensing measurements of thermal emission and a thermophysical model to determine the microphysical properties of the lunar regolith. We expand upon previous investigations by developing a microphysical thermal model, which more directly simulates regolith properties, such as grain size and volume filling factor. The modeled temperatures are matched with surface temperatures measured by the Diviner Lunar Radiometer Experiment on board the Lunar Reconnaissance Orbiter. The maria and highlands are investigated separately and characterized in the model by a difference in albedo and grain density. We find similar regolith temperatures for both terrains, which can be well described by similar volume filling factor profiles and mean grain sizes obtained from returned Apollo samples. We also investigate a significantly lower thermal conductivity for highlands, which formally also gives a very good solution, but in a parameter range that is well outside the Apollo data. We then study the latitudinal dependence of regolith properties up to ±80° latitude. When assuming constant regolith properties, we find that a variation of the solar incidence-dependent albedo can reduce the initially observed latitudinal gradient between model and Diviner measurements significantly. A better match between measurements and model can be achieved by a variation in intrinsic regolith properties with a decrease in bulk density with increasing latitude. We find that a variation in grain size alone cannot explain the Diviner measurements at higher latitudes.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 30
  • 31
    Publication Date: 2024-04-02
    Description: The decarbonization of the European energy system demands a rapid and comprehensive transformation while securing energy supplies at all times. Still, natural gas plays a crucial role in this process. Recent unexpected events forced drastic changes in gas routes throughout Europe. Therefore, operational-level analysis of the gas transport networks and technical capacities to cope with these transitions using unconventional scenarios has become essential. Unfortunately, data limitations often hinder such analyses. To overcome this challenge, we propose a mathematical model-based scenario generator that enables operational analysis of the European gas network using open data. Our approach focuses on the consistent analysis of specific partitions of the gas transport network, whose network topology data is readily available. We generate reproducible and consistent node-based gas in/out-flow scenarios for these defined network partitions to enable feasibility analysis and data quality assessment. Our proposed method is demonstrated through several applications that address the feasibility analysis and data quality assessment of the German gas transport network. By using open data and a mathematical modeling approach, our method allows for a more comprehensive understanding of the gas transport network's behavior and assists in decision-making during the transition to decarbonization.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 32
  • 33
    Publication Date: 2024-04-10
    Description: In this work, we study the geodesics of the space of certain geometrically and physically motivated subspaces of the space of immersed curves endowed with a first order Sobolev metric. This includes elastic curves and also an extension of some results on planar concentric circles to surfaces. The work focuses on intrinsic and constructive approaches.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-04-16
    Description: For decades, de Casteljau's algorithm has been used as a fundamental building block in curve and surface design and has found a wide range of applications in fields such as scientific computing, and discrete geometry to name but a few. With increasing interest in nonlinear data science, its constructive approach has been shown to provide a principled way to generalize parametric smooth curves to manifolds. These curves have found remarkable new applications in the analysis of parameter-dependent, geometric data. This article provides a survey of the recent theoretical developments in this exciting area as well as its applications in fields such as geometric morphometrics and longitudinal data analysis in medicine, archaeology, and meteorology.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-04-15
    Description: The rolling stock rotation problem with predictive maintenance (RSRP-PdM) involves the assignment of trips to a fleet of vehicles with integrated maintenance scheduling based on the predicted failure probability of the vehicles. These probabilities are determined by the health states of the vehicles, which are considered to be random variables distributed by a parameterized family of probability distribution functions. During the operation of the trips, the corresponding parameters get updated. In this article, we present a dual solution approach for RSRP-PdM and generalize a linear programming based lower bound for this problem to families of probability distribution functions with more than one parameter. For this purpose, we define a rounding function that allows for a consistent underestimation of the parameters and model the problem by a state-expanded event-graph in which the possible states are restricted to a discrete set. This induces a flow problem that is solved by an integer linear program. We show that the iterative refinement of the underlying discretization leads to solutions that converge from below to an optimal solution of the original instance. Thus, the linear relaxation of the considered integer linear program results in a lower bound for RSRP-PdM. Finally, we report on the results of computational experiments conducted on a library of test instances.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-04-11
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-04-23
    Description: Protein–protein interactions (PPIs) offer great opportunities to expand the druggable proteome and therapeutically tackle various diseases, but remain challenging targets for drug discovery. Here, we provide a comprehensive pipeline that combines experimental and computational tools to identify and validate PPI targets and perform early-stage drug discovery. We have developed a machine learning approach that prioritizes interactions by analyzing quantitative data from binary PPI assays or AlphaFold-Multimer predictions. Using the quantitative assay LuTHy together with our machine learning algorithm, we identified high-confidence interactions among SARS-CoV-2 proteins for which we predicted three-dimensional structures using AlphaFold-Multimer. We employed VirtualFlow to target the contact interface of the NSP10-NSP16 SARS-CoV-2 methyltransferase complex by ultra-large virtual drug screening. Thereby, we identified a compound that binds to NSP10 and inhibits its interaction with NSP16, while also disrupting the methyltransferase activity of the complex, and SARS-CoV-2 replication. Overall, this pipeline will help to prioritize PPI targets to accelerate the discovery of early-stage drug candidates targeting protein complexes and pathways.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-04-23
    Description: Task-adapted image reconstruction methods using end-to-end trainable neural networks (NNs) have been proposed to optimize reconstruction for subsequent processing tasks, such as segmentation. However, their training typically requires considerable hardware resources and thus, only relatively simple building blocks, e.g. U-Nets, are typically used, which, albeit powerful, do not integrate model-specific knowledge. In this work, we extend an end-to-end trainable task-adapted image reconstruction method for a clinically realistic reconstruction and segmentation problem of bone and cartilage in 3D knee MRI by incorporating statistical shape models (SSMs). The SSMs model the prior information and help to regularize the segmentation maps as a final post-processing step. We compare the proposed method to a state-of-the-art (SOTA) simultaneous multitask learning approach for image reconstruction and segmentation (MTL) and to a complex SSMs-informed segmentation pipeline (SIS). Our experiments show that the combination of joint end-to-end training and SSMs to further regularize the segmentation maps obtained by MTL highly improves the results, especially in terms of mean and maximal surface errors. In particular, we achieve the segmentation quality of SIS and, at the same time, a substantial model reduction that yields a five-fold decimation in model parameters and a computational speedup of an order of magnitude. Remarkably, even for undersampling factors of up to R=8, the obtained segmentation maps are of comparable quality to those obtained by SIS from ground-truth images.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-04-22
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-04-17
    Description: We present a heuristic solution approach for the rolling stock rotation problem with predictive maintenance (RSRP-PdM). The task of this problem is to assign a sequence of trips to each of the vehicles and to schedule their maintenance such that all trips can be operated. Here, the health states of the vehicles are considered to be random variables distributed by a family of probability distribution functions, and the maintenance services should be scheduled based on the failure probability of the vehicles. The proposed algorithm first generates a solution by solving an integer linear program and then heuristically improves this solution by applying a local search procedure. For this purpose, the trips assigned to the vehicles are split up and recombined, whereby additional deadhead trips can be inserted between the partial assignments. Subsequently, the maintenance is scheduled by solving a shortest path problem in a state-expanded version of a space-time graph restricted to the trips of the individual vehicles. The solution approach is tested and evaluated on a set of test instances based on real-world timetables.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-04-30
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-04-30
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-04-26
    Description: The stability of shear layers in fluid flows is a crucial factor in forming vortices and jets and plays a fundamental role in the development of turbulence. Such shear layer instabilities are ubiquitous in natural phenomena, such as atmospheric and oceanic flows, contributing to the formation of weather systems and predicting tsunamis. This study specifically focuses on the stability of a shear layer sandwiched between two semi-infinite layers within a two-dimensional flow. The velocity profile of the shear layer is assumed to be linearly dependent on the vertical coordinate, while the velocity of the other layers remains uniform with differing strengths. The effect of viscosity and surface tension is ignored to simplify the analysis. The shallow water equations are used to analyze the interface stability of the shear layer, and the resulting dispersion relation between wave frequency and other wave characteristics is obtained. This relation incorporates Whittaker functions and their first derivatives and is used to derive appropriate limits corresponding to various physical conditions. Our study thus contributes to a deeper understanding of the stability of shear layers and their implications for natural phenomena.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2024-04-24
    Language: English
    Type: bookpart , doc-type:bookPart
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2024-04-24
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2024-05-06
    Description: The multi-grid reaction-diffusion master equation (mgRDME) provides a generalization of stochastic compartment-based reaction-diffusion modelling described by the standard reaction-diffusion master equation (RDME). By enabling different resolutions on lattices for biochemical species with different diffusion constants, the mgRDME approach improves both accuracy and efficiency of compartment-based reaction-diffusion simulations. The mgRDME framework is examined through its application to morphogen gradient formation in stochastic reaction-diffusion scenarios, using both an analytically tractable first-order reaction network and a model with a second-order reaction. The results obtained by the mgRDME modelling are compared with the standard RDME model and with the (more detailed) particle-based Brownian dynamics simulations. The dependence of error and numerical cost on the compartment sizes is defined and investigated through a multi-objective optimization problem.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2024-05-13
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2024-05-08
    Description: This paper is concerned with collective variables, or reaction coordinates, that map a discrete-in-time Markov process X_n in R^d to a (much) smaller dimension k≪d. We define the effective dynamics under a given collective variable map ξ as the best Markovian representation of X_n under ξ. The novelty of the paper is that it gives strict criteria for selecting optimal collective variables via the properties of the effective dynamics. In particular, we show that the transition density of the effective dynamics of the optimal collective variable solves a relative entropy minimization problem from certain family of densities to the transition density of X_n. We also show that many transfer operator-based data-driven numerical approaches essentially learn quantities of the effective dynamics. Furthermore, we obtain various error estimates for the effective dynamics in approximating dominant timescales / eigenvalues and transition rates of the original process X_n and how optimal collective variables minimize these errors. Our results contribute to the development of theoretical tools for the understanding of complex dynamical systems, e.g. molecular kinetics, on large timescales. These results shed light on the relations among existing data-driven numerical approaches for identifying good collective variables, and they also motivate the development of new methods.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 49
  • 50
    Publication Date: 2024-05-16
    Description: The Koopman operator has entered and transformed many research areas over the last years. Although the underlying concept–representing highly nonlinear dynamical systems by infinite-dimensional linear operators–has been known for a long time, the availability of large data sets and efficient machine learning algorithms for estimating the Koopman operator from data make this framework extremely powerful and popular. Koopman operator theory allows us to gain insights into the characteristic global properties of a system without requiring detailed mathematical models. We will show how these methods can also be used to analyze complex networks and highlight relationships between Koopman operators and graph Laplacians.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 51
  • 52
    Publication Date: 2024-05-30
    Description: Compressible flows are prevalent in natural and technological processes, particularly in the energy transition to renewable energy systems. Consequently, extensive research has focused on understanding the stability of tangential--velocity discontinuity in compressible media. Despite recent advancements that address industrial challenges more realistically, many studies have ignored viscous stress tensors' impact, leading to inaccuracies in predicting interface stability. This omission becomes critical, especially in high Reynolds or low Mach number flows, where viscous forces dissipate kinetic energy across interfaces, affect total energy dissipation, and dampen flow instabilities. Our work is thus motivated to analyze the viscosity force effect by including the viscous stress tensor terms in the motion equations. Our results show that by considering the effect of viscous forces, the tangential-velocity discontinuity interface is constantly destabilized for the entire range of the Mach number.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2024-05-27
    Description: We have investigated how Langevin dynamics is affected by the friction coefficient using the novel algorithm ISOKANN, which combines the transfer operator approach with modern machine learning techniques. ISOKANN describes the dynamics in terms of an invariant subspace projection of the Koopman operator defined in the entire state space, avoiding approximations due to dimensionality reduction and discretization. Our results are consistent with the Kramers turnover and show that in the low and moderate friction regimes, metastable macro-states and transition rates are defined in phase space, not only in position space.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2024-05-27
    Description: At present, data management plans (DMPs) are still often perceived as mere documents for funding agencies providing clarity on how research data will be handled during a funded project, but are not usually actively involved in the processes. However, they contain a great deal of information that can be shared automatically to facilitate active research data management (RDM) by providing metadata to research infrastructures and supporting communication between all involved stakeholders. This position paper brings together a number of ideas developed and collected during interdisciplinary workshops of the Data Management Planning Working Group (infra-dmp), which is part of the section Common Infrastructures of the National Research Data Infrastructure (NFDI) in Germany. We present our vision of a possible future role of DMPs, templates, and tools in the upcoming NFDI service architecture.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2024-06-03
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-06-05
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-06-04
    Description: Existing planning approaches for onshore wind farm siting and grid integration often do not meet minimum cost solutions or social and environmental considerations. In this paper, we develop an exact approach for the integrated layout and cable routing problem of onshore wind farm planning using the Quota Steiner tree problem. Applying a novel transformation on a known directed cut formulation, reduction techniques, and heuristics, we design an exact solver that makes large problem instances solvable and outperforms generic MIP solvers. In selected regions of Germany, the trade-offs between minimizing costs and landscape impact of onshore wind farm siting are investigated. Although our case studies show large trade-offs between the objective criteria of cost and landscape impact, small burdens on one criterion can significantly improve the other criteria. In addition, we demonstrate that contrary to many approaches for exclusive turbine siting, grid integration must be simultaneously optimized to avoid excessive costs or landscape impacts in the course of a wind farm project. Our novel problem formulation and the developed solver can assist planners in decision-making and help optimize wind farms in large regions in the future.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 58
  • 59
    Publication Date: 2024-06-10
    Description: It has been shown that any 9 by 9 Sudoku puzzle must contain at least 17 clues to have a unique solution. This paper investigates the more specific question: given a particular completed Sudoku grid, what is the minimum number of clues in any puzzle whose unique solution is the given grid? We call this problem the Minimum Sudoku Clue Problem (MSCP). We formulate MSCP as a binary bilevel linear program, present a class of globally valid inequalities, and provide a computational study on 50 MSCP instances of 9 by 9 Sudoku grids. Using a general bilevel solver, we solve 95% of instances to optimality, and show that the solution process benefits from the addition of a moderate amount of inequalities. Finally, we extend the proposed model to other combinatorial problems in which uniqueness of the solution is of interest.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-06-10
    Description: For industries like the cement industry, switching to a carbon-neutral production process is impossible. They must rely on carbon capture, utilization and storage (CCUS) technologies to reduce their production processes’ inevitable carbon dioxide (CO2) emissions. For transporting continuously large amounts of CO2, utilizing a pipeline network is the most effective solution; however, building such a network is expensive. Therefore minimizing the cost of the pipelines to be built is extremely important to make the operation financially feasible. In this context, we investigate the problem of finding optimal pipeline diameters from a discrete set of diameters for a tree-shaped network transporting captured CO2 from multiple sources to a single sink. The general problem of optimizing arc capacities in potential-based fluid networks is already a challenging mixed-integer nonlinear optimization problem. The problem becomes even more complex when adding the highly sensitive nonlinear behavior of CO2 regarding temperature and pressure changes. We propose an iterative algorithm splitting the problem into two parts: a) the pipe-sizing problem under a fixed supply scenario and temperature distribution and b) the thermophysical modeling, including mixing effects, the Joule-Thomson effect, and heat exchange with the surrounding environment. We demonstrate the effectiveness of our approach by applying our algorithm to a real-world network planning problem for a CO2 network in Western Germany. Further, we show the robustness of the algorithm by solving a large artificially created set of network instances.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2024-06-10
    Description: Collective variables (CVs) are low-dimensional projections of high-dimensional system states. They are used to gain insights into complex emergent dynamical behaviors of processes on networks. The relation between CVs and network measures is not well understood and its derivation typically requires detailed knowledge of both the dynamical system and the network topology. In this Letter, we present a data-driven method for algorithmically learning and understanding CVs for binary-state spreading processes on networks of arbitrary topology. We demonstrate our method using four example networks: the stochastic block model, a ring-shaped graph, a random regular graph, and a scale-free network generated by the Albert-Barabási model. Our results deliver evidence for the existence of low-dimensional CVs even in cases that are not yet understood theoretically.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-06-11
    Description: We study a complex planning and scheduling problem arising from the build-up process of air cargo pallets and containers, collectively referred to as unit load devices (ULD), in which ULDs must be assigned to workstations for loading. Since air freight usually becomes available gradually along the planning horizon, ULD build-ups must be scheduled neither too early to avoid underutilizing ULD capacity, nor too late to avoid resource conflicts with other flights. Whenever possible, ULDs should be built up in batches, thereby giving ground handlers more freedom to rearrange cargo and utilize the ULD's capacity efficiently. The resulting scheduling problem has an intricate cost function and produces large time-expanded models, especially for longer planning horizons. We propose a logic-based Benders decomposition approach that assigns batches to time intervals and workstations in the master problem, while the actual schedule is decided in a subproblem. By choosing appropriate intervals, the subproblem becomes a feasibility problem that decomposes over the workstations. Additionally, the similarity of many batches is exploited by a strengthening procedure for no-good cuts. We benchmark our approach against a time-expanded MIP formulation from the literature on a publicly available data set. It solves 15% more instances to optimality and decreases run times by more than 50% in the geometric mean. This improvement is especially pronounced for longer planning horizons of up to one week, where the Benders approach solves over 50% instances more than the baseline
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-06-11
    Description: This article addresses reaction networks in which spatial and stochastic effects are of crucial importance. For such systems, particle-based models allow us to describe all microscopic details with high accuracy. However, they suffer from computational inefficiency if particle numbers and density get too large. Alternative coarse-grained-resolution models reduce computational effort tremendously, e.g., by replacing the particle distribution by a continuous concentration field governed by reaction-diffusion PDEs. We demonstrate how models on the different resolution levels can be combined into hybrid models that seamlessly combine the best of both worlds, describing molecular species with large copy numbers by macroscopic equations with spatial resolution while keeping the stochastic-spatial particle-based resolution level for the species with low copy numbers. To this end, we introduce a simple particle-based model for the binding dynamics of ions and vesicles at the heart of the neurotransmission process. Within this framework, we derive a novel hybrid model and present results from numerical experiments which demonstrate that the hybrid model allows for an accurate approximation of the full particle-based model in realistic scenarios.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-06-11
    Description: The landscape of applications and subroutines relying on shortest path computations continues to grow steadily. This growth is driven by the undeniable success of shortest path algorithms in theory and practice. It also introduces new challenges as the models and assessing the optimality of paths become more complicated. Hence, multiple recent publications in the field adapt existing labeling methods in an ad hoc fashion to their specific problem variant without considering the underlying general structure: they always deal with multi-criteria scenarios, and those criteria define different partial orders on the paths. In this paper, we introduce the partial order shortest path problem (POSP), a generalization of the multi-objective shortest path problem (MOSP) and in turn also of the classical shortest path problem. POSP captures the particular structure of many shortest path applications as special cases. In this generality, we study optimality conditions or the lack of them, depending on the objective functions’ properties. Our final contribution is a big lookup table summarizing our findings and providing the reader with an easy way to choose among the most recent multi-criteria shortest path algorithms depending on their problems’ weight structure. Examples range from time-dependent shortest path and bottleneck path problems to the electric vehicle shortest path problem with recharging and complex financial weight functions studied in the public transportation community. Our results hold for general digraphs and, therefore, surpass previous generalizations that were limited to acyclic graphs.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-06-11
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2024-06-11
    Description: Studying neural mechanisms in complementary model organisms from different ecological niches in the same animal class can leverage the comparative brain analysis at the cellular level. To advance such a direction, we developed a unified brain atlas platform and specialized tools that allowed us to quantitatively compare neural structures in two teleost larvae, medaka (Oryzias latipes) and zebrafish (Danio rerio). Leveraging this quantitative approach we found that most brain regions are similar but some subpopulations are unique in each species. Specifically, we confirmed the existence of a clear dorsal pallial region in the telencephalon in medaka lacking in zebrafish. Further, our approach allows for extraction of differentially expressed genes in both species, and for quantitative comparison of neural activity at cellular resolution. The web-based and interactive nature of this atlas platform will facilitate the teleost community’s research and its easy extensibility will encourage contributions to its continuous expansion.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-06-11
    Description: This work explores a synchronization-like phenomenon induced by common noise for continuous-time Markov jump processes given by chemical reaction networks. Based on Gillespie’s stochastic simulation algorithm, a corresponding random dynamical system is formulated in a two-step procedure, at first for the states of the embedded discrete-time Markov chain and then for the augmented Markov chain including random jump times. We uncover a time-shifted synchronization in the sense that—after some initial waiting time—one trajectory exactly replicates another one with a certain time delay. Whether or not such a synchronization behavior occurs depends on the combination of the initial states. We prove this partial time-shifted synchronization for the special setting of a birth-death process by analyzing the corresponding two-point motion of the embedded Markov chain and determine the structure of the associated random attractor. In this context, we also provide general results on existence and form of random attractors for discrete-time, discrete-space random dynamical systems.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-06-20
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-06-20
    Description: Derivative-based iterative methods for nonlinearly constrained non-convex optimization usually share common algorithmic components, such as strategies for computing a descent direction and mechanisms that promote global convergence. Based on this observation, we introduce an abstract framework based on four common ingredients that describes most derivative-based iterative methods and unifies their workflows. We then present Uno, a modular C++ solver that implements our abstract framework and allows the automatic generation of various strategy combinations with no programming effort from the user. Uno is meant to (1) organize mathematical optimization strategies into a coherent hierarchy; (2) offer a wide range of efficient and robust methods that can be compared for a given instance; (3) enable researchers to experiment with novel optimization strategies; and (4) reduce the cost of development and maintenance of multiple optimization solvers. Uno's software design allows user to compose new customized solvers for emerging optimization areas such as robust optimization or optimization problems with complementarity constraints, while building on reliable nonlinear optimization techniques. We demonstrate that Uno is highly competitive against state-of-the-art solvers filterSQP, IPOPT, SNOPT, MINOS, LANCELOT, LOQO, and CONOPT on a subset of 429 small problems from the CUTEst collection. Uno is available as open-source software under the MIT license at https://github.com/cvanaret/Uno .
    Language: English
    Type: other , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-06-20
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-06-19
    Language: English
    Type: poster , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2024-06-19
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2024-06-13
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2024-06-13
    Description: Nirmatrelvir/Ritonavir is an oral treatment for mild to moderate COVID-19 cases with a high risk for a severe course of the disease. For this paper, a comprehensive literature review was performed, leading to a summary of currently available data on Nirmatrelvir/Ritonavir’s ability to reduce the risk of progressing to a severe disease state. Herein, the focus lies on publications that include comparisons between patients receiving Nirmatrelvir/Ritonavir and a control group. The findings can be summarized as follows: Data from the time when the Delta-variant was dominant show that Nirmatrelvir/Ritonavir reduced the risk of hospitalization or death by 88.9% for unvaccinated, non-hospitalized high-risk individuals. Data from the time when the Omicron variant was dominant found decreased relative risk reductions for various vaccination statuses: between 26% and 65% for hospitalization. The presented papers that differentiate between unvaccinated and vaccinated individuals agree that unvaccinated patients benefit more from treatment with Nirmatrelvir/Ritonavir. However, when it comes to the dependency of potential on age and comorbidities, further studies are necessary. From the available data, one can conclude that Nirmatrelvir/Ritonavir cannot substitute vaccinations; however, its low manufacturing cost and easy administration make it a valuable tool in fighting COVID-19, especially for countries with low vaccination rates.
    Language: German
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2024-06-13
    Description: Any sports competition needs a timetable, specifying when and where teams meet each other. The recent International Timetabling Competition (ITC2021) on sports timetabling showed that, although it is possible to develop general algorithms, the performance of each algorithm varies considerably over the problem instances. This paper provides a problem type analysis for sports timetabling, resulting in powerful insights into the strengths and weaknesses of eight state-of-the-art algorithms. Based on machine learning techniques, we propose an algorithm selection system that predicts which algorithm is likely to perform best based on the type of competition and constraints being used (i.e., the problem type) in a given sports timetabling problem instance. Furthermore, we visualize how the problem type relates to algorithm performance, providing insights and possibilities to further enhance several algorithms. Finally, we assess the empirical hardness of the instances. Our results are based on large computational experiments involving about 50 years of CPU time on more than 500 newly generated problem instances.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2024-07-02
    Description: Generating simulated training data needed for constructing sufficiently accurate surrogate models to be used for efficient optimization or parameter identification can incur a huge computational effort in the offline phase. We consider a fully adaptive greedy approach to the computational design of experiments problem using gradient-enhanced Gaussian process regression as surrogates. Designs are incrementally defined by solving an optimization problem for accuracy given a certain computational budget. We address not only the choice of evaluation points but also of required simulation accuracy, both of values and gradients of the forward model. Numerical results show a significant reduction of the computational effort compared to just position-adaptive and static designs as well as a clear benefit of including gradient information into the surrogate training.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2024-06-27
    Description: The investigation of energy transition paths toward a sustainable and decarbonized future under uncertainty is a critical aspect of contemporary energy planning and policy development. There are numerous methods for analysing uncertainties and sensitivities and many studies on sustainable transformation paths, but there is a lack of combined application to relevant use-cases. In this study, we investigate the sensitivity of energy transition paths to uncertainties in operational and investment costs of power plants in the metropolitan area of Berlin and its rural surroundings. By employing the linear programming energy system model oemof-B3, we extensively focus on the system's energy technologies, such as wind turbines, photovoltaics, hydro and combustion plants, and energy storages. Greenhouse gas reduction and electrification rates per commodity are realized by selected constraints. Our research aims to discern how investments in energy production capacities are influenced by uncertainties of other energy technologies' investment and operational costs in the system. We apply a quantitative approach to investigate such interdependencies of cost variations and their impact on long-term energy planning. Thus, the analysis sheds light on the robustness of energy transition paths in the face of these uncertainties. The region Berlin-Brandenburg serves as a case study and thus reflects on the present space conflicts to meet energy demands in urban and suburban areas and their rural surroundings. An electricity-intensive scenario is selected that assumes a 100 % reduction in greenhouse gas emissions by 2050. With the results of the case study, we show how our approach enables rural and metropolitan decision-makers to collaborate in achieving sustainable energy. Decision-making in long-term energy planning can be made more robust and flexible by acknowledging the identified sensitivities and enable such regions better to navigate challenges and uncertainties associated with sustainable energy planning.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2024-06-26
    Description: Respiratory viral infections (RVIs) are common reasons for healthcare consultations. The inpatient management of RVIs consumes significant resources. From 2009 to 2014, we assessed the costs of RVI management in 4776 hospitalized children aged 0–18 years participating in a quality improvement program, where all ILI patients underwent virologic testing at the National Reference Centre followed by detailed recording of their clinical course. The direct (medical or non-medical) and indirect costs of inpatient management outside the ICU (‘non-ICU’) versus management requiring ICU care (‘ICU’) added up to EUR 2767.14 (non-ICU) vs. EUR 29,941.71 (ICU) for influenza, EUR 2713.14 (non-ICU) vs. EUR 16,951.06 (ICU) for RSV infections, and EUR 2767.33 (non-ICU) vs. EUR 14,394.02 (ICU) for human rhinovirus (hRV) infections, respectively. Non-ICU inpatient costs were similar for all eight RVIs studied: influenza, RSV, hRV, adenovirus (hAdV), metapneumovirus (hMPV), parainfluenza virus (hPIV), bocavirus (hBoV), and seasonal coronavirus (hCoV) infections. ICU costs for influenza, however, exceeded all other RVIs. At the time of the study, influenza was the only RVI with antiviral treatment options available for children, but only 9.8% of influenza patients (non-ICU) and 1.5% of ICU patients with influenza received antivirals; only 2.9% were vaccinated. Future studies should investigate the economic impact of treatment and prevention of influenza, COVID-19, and RSV post vaccine introduction.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2024-06-26
    Description: Collaborative comparisons and combinations of epidemic models are used as policy-relevant evidence during epidemic outbreaks. In the process of collecting multiple model projections, such collaborations may gain or lose relevant information. Typically, modellers contribute a probabilistic summary at each time-step. We compared this to directly collecting simulated trajectories. We aimed to explore information on key epidemic quantities; ensemble uncertainty; and performance against data, investigating potential to continuously gain information from a single cross-sectional collection of model results. Methods We compared July 2022 projections from the European COVID-19 Scenario Modelling Hub. Five modelling teams projected incidence in Belgium, the Netherlands, and Spain. We compared projections by incidence, peaks, and cumulative totals. We created a probabilistic ensemble drawn from all trajectories, and compared to ensembles from a median across each model’s quantiles, or a linear opinion pool. We measured the predictive accuracy of individual trajectories against observations, using this in a weighted ensemble. We repeated this sequentially against increasing weeks of observed data. We evaluated these ensembles to reflect performance with varying observed data. Results. By collecting modelled trajectories, we showed policy-relevant epidemic characteristics. Trajectories contained a right-skewed distribution well represented by an ensemble of trajectories or a linear opinion pool, but not models’ quantile intervals. Ensembles weighted by performance typically retained the range of plausible incidence over time, and in some cases narrowed this by excluding some epidemic shapes. Conclusions. We observed several information gains from collecting modelled trajectories rather than quantile distributions, including potential for continuously updated information from a single model collection. The value of information gains and losses may vary with each collaborative effort’s aims, depending on the needs of projection users. Understanding the differing information potential of methods to collect model projections can support the accuracy, sustainability, and communication of collaborative infectious disease modelling efforts. Data availability All code and data available on Github: https://github.com/covid19-forecast-hub-europe/aggregation-info-loss
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2024-06-24
    Description: The recent COVID-19 pandemic has thrown the importance of accurately forecasting contagion dynamics and learning infection parameters into sharp focus. At the same time, effective policy-making requires knowledge of the uncertainty on such predictions, in order, for instance, to be able to ready hospitals and intensive care units for a worst-case scenario without needlessly wasting resources. In this work, we apply a novel and powerful computational method to the problem of learning probability densities on contagion parameters and providing uncertainty quantification for pandemic projections. Using a neural network, we calibrate an ODE model to data of the spread of COVID-19 in Berlin in 2020, achieving both a significantly more accurate calibration and prediction than Markov-Chain Monte Carlo (MCMC)-based sampling schemes. The uncertainties on our predictions provide meaningful confidence intervals e.g. on infection figures and hospitalisation rates, while training and running the neural scheme takes minutes where MCMC takes hours. We show convergence of our method to the true posterior on a simplified SIR model of epidemics, and also demonstrate our method's learning capabilities on a reduced dataset, where a complex model is learned from a small number of compartments for which data is available.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2024-07-01
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2024-07-08
    Description: The Jacobi set of a bivariate scalar field is the set of points where the gradients of the two constituent scalar fields align with each other. It captures the regions of topological changes in the bivariate field. The Jacobi set is a bivariate analog of critical points, and may correspond to features of interest. In the specific case of time-varying fields and when one of the scalar fields is time, the Jacobi set corresponds to temporal tracks of critical points, and serves as a feature-tracking graph. The Jacobi set of a bivariate field or a time-varying scalar field is complex, resulting in cluttered visualizations that are difficult to analyze. This paper addresses the problem of Jacobi set simplification. Specifically, we use the time-varying scalar field scenario to introduce a method that computes a reduced Jacobi set. The method is based on a stability measure called robustness that was originally developed for vector fields and helps capture the structural stability of critical points. We also present a mathematical analysis for the method, and describe an implementation for 2D time-varying scalar fields. Applications to both synthetic and real-world datasets demonstrate the effectiveness of the method for tracking features.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 83