Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (4)
  • 2015-2019
  • 2010-2014  (2)
  • 2005-2009
  • 2000-2004
  • 1975-1979
  • 1930-1934
  • 1920-1924
  • 1905-1909
  • 2022  (3)
  • 2021  (1)
  • 2012  (2)
  • 2010
  • 2009
  • 2004
  • 2000
  • 1976
  • 1975
  • 1933
  • 1908
  • 1905
  • Japanese  (6)
Years
  • 2020-2024  (4)
  • 2015-2019
  • 2010-2014  (2)
  • 2005-2009
  • 2000-2004
  • +
Year
Language
  • 1
    Publication Date: 2023-11-03
    Language: Japanese
    Type: proceedings , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-26
    Description: For the purpose of attaining the highest performance of energy supply systems, it is important to design the systems optimally in consideration of their operational strategies for seasonal and hourly variations in energy demands. An ap- proach to efficiently solve such an optimal design problem with a large number of periods for variations in energy de- mands is to derive an approximate optimal design solution by aggregating periods with a clustering method. However, such an approach does not provide any information on the accuracy for the optimal value of the objective function. The purpose of this paper is to propose a time aggregation approach for deriving suitable aprroximate optimal design solutions and evaluting their values of the objective function accurately. This time aggregation approach is realized by combining a robust optimal design method under uncertain energy demands and a hierarchical approach for solving large scale optimal design problems. A case study is conducted for a cogeneration system with a practical configuration, and it turns out that the proposed approach enables one to evaluate effective upper and lower bounds for the optimal value of the objective function as compared with those obtained by a conventional approach.
    Language: Japanese
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-26
    Description: For the purpose of attaining the highest performance of energy supply systems, it is important to design the systems optimally in consideration of their operational strategies for seasonal and hourly variations in energy demands. An ap- proach to solve such an optimal design problem with a large number of periods efficiently is to derive an approximate optimal design solution by aggregating periods with a clustering method. However, such an approach does not provide any information on the accuracy for the optimal value of the objective function. The purpose of this paper is to provide a time aggregation method for deriving aprroximate optimal design solutions and evaluting their values of the objective function. Especially, a method of evaluating design solutions is presented here using both methods of evaluating the robustness under uncertain energy demands and solving optimal design problems by a hierarchical approach. A case study is conducted for a cogeneration system with a practical configuration, and it turns out that the proposed approach enables one to evaluate effective lower bounds for the optimal value of the objective function as compared with those obtained by a conventional approach.
    Language: Japanese
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-04-17
    Description: Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, some strategies have been proposed to enhance the computation efficiency furthermore. As one of the strategies, a method of reducing model by time aggregation has been proposed to search design candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, the hierarchical MILP method with the strategies has been extendedly applied to the optimal design of energy supply systems with storage units. Especially, the method of re- ducing model is extended by aggregating representative days and sampling times differently in consideration of the characteristics of storage units. A case study is conducted on the optimal design of a gas turbine cogeneration system with a thermal storage unit for district energy supply. Through the study, it turns out the hierarchical MILP method is effective to derive the optimal solution as compared with a conventional method. It also turns out that the model reduction with the special time aggregation is effective to shorten the computation time as compared with that without time aggregation in case that the number of candidates for equipment capacities is relatively small.
    Language: Japanese
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-14
    Description: この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる.
    Description: This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how in concert these can be used to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview over available interfaces, and outline plans for future development.
    Language: Japanese
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-14
    Description: この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる.
    Description: This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how in concert these can be used to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview over available interfaces, and outline plans for future development.
    Language: Japanese
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...