Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Japanese  (4)
Years
Language
  • 1
    Publication Date: 2022-05-13
    Description: 二次割当問題は線形緩和が弱いことが知られ,強化のため多様な緩和手法が考案されているが,その一つである二重非負値計画緩和( DNN 緩和)及びその解法として近年研究が進んでいるニュートン・ブラケット法を紹介し,それらに基づく分枝限定法の実装及び数値実験結果について報告する.
    Language: Japanese
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-14
    Description: 制約整数計画(CIP: Constraint Integer Programming)は,制約プログラミング(CP: Constraint Programming), 混合整数計画(MIP: Mixed Integer Programming), 充足可能性問題(SAT: Satisfiability Problems)の研究 分野におけるモデリング技術と解法を統合している.その結果,制約整数計画は,広いクラスの最適化問題を 扱うことができる.SCIP (Solving Constraint Integer Programs)は,CIPを解くソルバとして実装され, Zuse Institute Berlin (ZIB)の研究者を中心として継続的に拡張が続けられている.本論文では, 著者らによって開発されたSCIP に対する2種類の並列化拡張を紹介する. 一つは,複数計算ノード間で大規模に並列動作するParaSCIP である. もう一つは,複数コアと共有メモリを持つ1台の計算機上で(スレッド)並列で動作するFiberSCIP である. ParaSCIP は,HLRN IIスーパーコンピュータ上で, 一つのインスタンスを解くために最大7,168 コアを利用した動作実績がある.また, 統計数理研究所のFujitsu PRIMERGY RX200S5上でも,最大512コアを利用した動作実績がある. 統計数理研究所のFujitsu PRIMERGY RX200S5上 では,これまでに最適解が得られていなかった MIPLIB2010のインスタンスであるdg012142に最適解を与えた.
    Description: The paradigm of Constraint Integer Programming (CIP) combines modeling and solving techniques from the fields of Constraint Programming (CP), Mixed Integer Programming (MIP) and Satisfiability Problems (SAT). The paradigm allows us to address a wide range of optimization problems. SCIP is an implementation of the idea of CIP and is now continuously extended by a group of researchers centered at Zuse Institute Berlin (ZIB). This paper introduces two parallel extensions of SCIP. One is ParaSCIP, which is intended to run on a large scale distributed memory computing environment, and the other is FiberSCIP, intended to run on shared memory computing environments. ParaSCIP has successfully been run on the HLRN II supercomputer utilizing up to 7,168 cores to solve a single difficult MIP. It has also been tested on an ISM supercomputer (Fujitsu PRIMERGY RX200S5 using up to 512 cores). The previously unsolved instance dg012142 from MIPLIB2010 was solved by using the ISM supercomputer.
    Language: Japanese
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-14
    Description: この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる.
    Description: This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how in concert these can be used to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview over available interfaces, and outline plans for future development.
    Language: Japanese
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-14
    Description: この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる.
    Description: This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how in concert these can be used to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview over available interfaces, and outline plans for future development.
    Language: Japanese
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...